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Prediction and Correction of Propagation-Induced Depth Measurement Biases
plus Signal Attenuation and Beam Spreading for Airborne Laser Hydrography

Gary C. Guenther
NOAA/National Ocean Service
Rockville, Maryland 20852

and

Robert W. L. Thomas
EG&G/Washington Analytic Services Center
Riverdale, Maryland 20737

ABSTRACT. Monte Carlo simulation techniques have been
applied to underwater light propagation to calculate
the magnitudes of propagation-induced depth measurement
bias errors as well as spatial beam spreading and
signal attenuation for airborne laser hydrography. The
bias errors are caused by the spatial and subsequent
temporal dispersion of the laser beam by particulate
scattering as it twice traverses the water column.
Beam spreading results dictate spatial resolutior at
the bottom and the receiver field-of-view
requirement. Sample temporal response functions are
presented. The pulse energy and peak power attenuation
relationships developed can be used to predict maximum
penetration depths. Predicted depth measurement biases
are reported as functions of scanner nadir angle,
physical depth, optical depth, scattering - phase
function, single-scattering albedo, and receiver field
of view for several diverse signal processing and pulse
location algorithms. Bias variations as a function of
unknown (in.the field) water optical parameters are
seen to be minimized for certain limited ranges of
nadir angles whose values depend on the processing
protocol. Bias correctors for use on field data are
reported as functions of nadir angle and depth.



1.0 INTRODUCTION

The basic premise of airborne laser hydrography is that the water depth
can be determined by measuring the round-trip transit time for a short
duration light pulse. The pulse is envisioned as travelling to the bottom and
back to the surface along a fixed path at a known angle from the vertical.
This simple model does not take into consideration the spatial and temporal
spreading of the beam in the water caused by scattering from entrained. organic
and inorganic particulate materials.

Analytical computations by Thomas and Guenther (1979) indicated the
existence of a significant depth measurement bias toward greater depths for
operations of an airborne laser hydrography system at nadir. The bias arises
from a lengthening of the total integrated path length due to the multiple-
scattering transport mechanism by which the laser radiation spreads as it
traverses the water column. This is the so-called "pulse stretching"
effect. For off-nadir beam entry angles, the assumed or “"reference" path is
the unscattered ray in the medium (see Fig. 1) generated by Snell's Law
refraction at a flat surface. There is a propensity for the core of the

downwelling energy distribution to be skewed away from this path toward the
vertical into the so-called "undercutting" region, due to the fact that the
average path length is shorter, and hence the attenuation is less. The energy
returning from this region tends to arrive at the airborne receiver earlier
than that from the reference path for the same reason. This causes a depth
measurement bias toward the shallow side. These two opposing biases superpose
to yield depth estimates which, although they depend on water optical
properties, are generally biased deep for small beam entry nadir angles and
shallow for 1large nadir angles. The net biases can greatly exceed
international hydrographic accuracy standards. -

The key to quantification of the effects of scattering is the generation
of a set of response functions for-the propagation geometry which characterize
the temporal history of radiation reaching the receiver for an impulse input.
Although various analytic approximations can be achieved via simplifying
assumptions, the actual formal problem is effectively intractable due to the
complexity of the multiple scattering. Monte Carlo simulation is a practical
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method of generating the needed impulse response functions (IRFs). A powerful
new Monte Carlo simulation technique has been developed and exercised to model
the effect of underwater radiative transfer processes on airborne lidar
signals for impulse Tlaser inputs to homogenous and inhomogeneous water
columns. The water parameters and systems constraints of the computations are
appropriate to airborne laser hydrography systems presently under
consideration for use in coastal waters. Simulation results include full sets
of spatial and temporal distributions. Horizontal resolution at the bottom
and receiver field-of-view requirements are derived from the spatial results.

The impulse responses from the simulation have been convolved with a
realistic source pulse to yield expected bottom return signal characteristics,
the so-called environmental response functions (ERFs) at a distant, off-nadir
airborne receiver. Appropriate volume backscatter decay has been added to the
leading edge of each ERF. Depth measurement biases have been estimated by
applying realistic signal processing and pulse location algorithms to the
augmented ERFs. Resulting outputs are pulse shapes, peak power, and, most
importantly, depth measurement bias predictions. Bias sensitivities to input
parameters are examined in detail.

It is important'that the propagation-induced depth measurement biases be
accurately calculated, because if the predicted biases do exceed an acceptable
magnitude, they can, at least conceptually, be applied to field data as bias
correctors in post-flight data processing to maintain system performance
within the error budget.



2.0 SIMULATION DESCRIPTION
2.1 Background

Preliminary simulation results were reported in Guenther and Thomas 198la
and 1981b. Dr. H. S. Lee (1982) pointed out that for off-nadir operation, the
methodology did not model the effect of geometric variation in the length of
the air path to the receiver across the exit spot at the water/air interface.
Since it was not possible with the given approach to obtain the necessary
spatial/temporal distribution of bottom reflected energy at the surface, a
modified technique for calculating the off-nadir receiver impulse response
functions was developed.

In the original version, the downwelling response was digitally convolved
with a slightly modified version of itself to produce the round-trip temporal
response function. This function correctly represents the ensemble of
returning photons at the water/air interface and also the return at a distant
receiver for nadir operation. Because of varying air-path lengths across the
exit spot. to a distant off-nadir receiver, however, a set of separate
upwelling response functions across the exit spot is required for calculation
of the off-nadir receiver response functions. A new solution was developed
which independently preserves both temporal and spatial information by pairing
each individual downwelling photon path with all (or a selected set of) other
paths. For selected receiver fields of view, the known temporal length of the
air path from the surface to the receiver for each path pair is added to the
associated water transit time to yield a combined, total transit time. The
FOV functionality is an added side benefit which was not previously available.

The net effect of this modification is to permit the earlier arrival of a
portion of the -energy scattered back toward the aircraft into the
"undercutting" region due to a shorter air path. This in turn causes the
resultant biases to be somewhat more in the shallow direction than previously
calculated, by an amount which increases with increasing off-nadir angle. The
newly derived biases and bias functionalities are reported herein.



Additionally, the previously reported bias results for processing
procedures planned for the U. S. Navy's Hydfographic Airborne Laser Sounder
(HALS) system -- the log/difference/CFD protocol (Guenther 1982) -- were based
on the simplifying assumption that the effect of the volume backscatter energy
preceding the bottom return is negligible. This assumption was questionable
for some of the "dirtier" water clarity conditions expected in coastal waters
and undoubtedly led to a certain amount of error in the bias predictions. The
HALS processing procedure for simulation data has now been upgraded to include
the volume backscatter signal appropriate to each respective ERF, and the
biases reported herein fully reflect those expected under field conditions.

2.2 Simulation Mechanics

In the Monte Carlo approach, the transport of photons to the bottom is
mode]ed as a series of individual, random scattering and absorption events in
the water column. Spatial and temporal distributions of photons arriving at
the bottom are accumulated over a large number of representative paths. These
distributions are then manipulated analytically to produce the estimated
response at a distant airborne receiver.

2.2.1 Definitions and Procedures

Traditionally, the mean free path for radiation transport through water
is described through a parameter called the "narrow-beam attenuation
coefficient", a(X), which is compromised of two components: scattering and
absorption. If "s" is the scattering coefficient and "a" is the absorption
coefficient, then a(A) = a(A) + s(A). The values of these water optical
properties depend strongly on wavelength, A. For coastal waters, the minimum

attenuation occurs in the green portion of the visible spectrum. Airborne
bathymetric lidar systems operate in the green in order to maximize depth
penetration potential. In this report, the wavelength dependence of the-water
parameters will not be explicitly shown, and all reported numeric values will
be appropriate for green wavelengths If a monochromatic beam of radiance, Nos
is incident on a column of water, then the amount that remains neither
scattered nor absorbed after travelling a distance, d, is No,exp (- ad).



Since the mean of the exponential occurs at «d =1, the mean free path, q,
is equal to «l. The vertical "optical depth" of the medium, defined as the
number of mean free path lengths required to vertically traverse the medium to

the bottom for a depth, D, is D/q which is thus equal to oD.

In the simulation, the distance between scattering events is assumed to
be exponentially distributed with a "mean free path", gq. Individual path
lengths, L, are generated from the expression L = -q In p, where p is a
rectangularly distributed random number in the interval (0,1).

The "albedo for single scattering", w,, is the average fraction of the
incident energy at each scattering event that is not absorbed: 1i.e.,
Wy = (e - a)/a =s/a. For typical coastal waters, wy ranges from about 0.55
to 0.93 at green wavelengths. In the simulations, photons are not actually
eliminated by absorption as they might be in the real world. Following the
method of Plass and Kattawar (1971), their behavior is represented by
retaining photon weights (initially unity) which are multiplied by a vector of
wy values at each scattering event. In this way, the photons are not removed
from the simulation, and resuits _can be .conveniently accumulated for many

values of u, at the same time.

Photons change direction at all scattering events. The scattering angle
y from the incident direction is generated according to the "phase function",
P(y), which defines the probability that the photon will scatter into a unit
solid angle at . Since the solid angle between ¢ and ¢ + dy is
2n siny dy, the probability of occurrence of ¢ in that range is
p'(y)dy = 2w siny P(yp) dy. Note that the phase function is simply the "volume
scattering function" normalized to exclude specific water clarity conditions
by dividing by the scattering coefficient, "s". The random value of each
simulated scattering angle, ¥, is generated by calculating and tabulating the
cumulative probability for a given phase function as a function of ¢ and
sampling the interpolated results with values of p, where p is another
rectangularly distributed random number between 0 and 1.



Typical phase functions for water at green wavelengths (Petzold 1972)
exhibit very strong forward scattering. For the lidar simulations, two
bounding phase functions for coastal waters designated "NAVY" or "clean"
(Petzold HAOCE-5) and "NOS" or "dirty" (Petzold NUC-2200) were utilized. As
seen in Fig. 2, these phase functions increase by a factor of more than 1,000
as the scattering angle diminishes from 10 to 0.1 degrees. The cumulative
distribution functions in Fig. 3 demonstrate that roughly a quarter of the
scattering occurs at angles of less than 1° and that three-fourths occurs
under 10°. Scattering results both from opaque inorganic particles and
translucent organics. Size distributions vary widely with location. The
large forward scattering observed indicates that the dominant scatterers are
inorganics of over micron size as well as organics of various sizes (Gordon
1974).

The ‘"inherent" parameters a, w,, and P(y), along with D, are the
independent descriptors of the transport medium characteristics required as
inputs by the simulation and are thus also the optical properties upon which
the biases are ultimately parameterized. The relationships between these
parameters and the parameters governing the "apparent" properties of the
medium have been discussed by Gordon, Brown, and Jacobs (1975). The most
important apparent optical parameter 1is K(1), the so-called "diffuse
attenuation coefficient," which is defined as the fractional rate of decay of
the downwelling flux with depth. For small depths, K depends on both the
depth itself and the angle of incidence of the radiation at the surface; but
for larger depths these dependences become very small, and K approaches an
asymptotic value. The ratio, K/a, as seen in Fig. 4 for'typica1 natural
waters, is a monotonically decreasing function of w,, which has a value of
unity when Wy is zero and which decreases to zero as w, tends to unity
(Timofeyeva and Gorobets 1967, Prieur and Morel 1971). There are small
dependences on the phase function and optical depth, but these are unimportant
for applications in coastal waters.

The energy loss of the downwelling beam as a function of depth, and hence
the maximum useable "penetration" depth for a laser system, is most easily
described in terms of K. In a similar fashion, K dictates the intensity and
rate of decay of the volume backscatter signal preceding the bottom return.
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The biases, however, are not functionally dependent on K or KD, but rather on
o or sD=w,cD. Combinations of « and w, which produce the same value of K do
not yield the same biases.

2.2.2 -Downwelling Distributions

Spatial, temporal, and angular distributions of downwelling photons are
accumulated at each of a series of optical depths between 2 and 16 as photons
pass through these various levels. In this way, results for a complete set of
bottom optical depths are generated in a single run. The lengths of the
photon paths for photons reaching the bottom are summed to allow an evaluation
of the associated time de]ay, The minimum time of transit to the bottom is
t, = D/c, where ¢ is the velocity of light in water. The time "delay" for
paths of length L; is then computed as tp = I Ly/c - ty. By performing this
computation for a large number of downwelling photons, the downwelling impulse
response function d(tp) is accumulated as a histogram representing the
distribution of arrival times of photons incident on the bottom. For
simulations intended to produce power and depth measurement bias results,
which need not conserve total energy, photons accruing delays of greater than
a quarter or a half of the depth transit time (depending on the nadir angle)
were terminated to save computer time because they would contribute only to
the extended tail of the temporal distribution.

An important gain in the information content of the results arises from
the realization that, for given values of o) and w, all temporal results scale
linearly with the depth. This is illustrated in Fig. 5 where representative
photon paths are shown for two cases with the same o) but with different
values of D. The photon paths for the two cases are geometrically "similar"
so that the fractional time delays, tp/tys are identical. The absolute time
delays thus scale linearly with D, and one set of normalized response
functions can be used to generate absolute results for all depths.

2.2.3 Impulse Response at a Distant Receiver

Several techniques were considered for completing the simulation to a
distant airborne receiver. The direct, geometric approach of tracking photon
paths to a distant receiver after a round-trip path through the water was

11
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considered impractical because the very low probability of such events would
lead to excessive computer usage. A sometimes useful technique involving
“virtual" photons, termed the "method of statistical estimation" by Spanier
and Gelbard (1969), involves the calculation and summing at each scattering
event of weighted scattering probabilities in the direction of the distant
receiver. This approach was attempted, but lead to noisy, irreproducible
behavior for as many as 10 incident photons due to the highly peaked nature
of the Petzold coastal phase functions. (The method was moderately successful
with broader phase functions such as the "KB" function favored by Gordon,
Brown, and Jacobs (1975) for clear ocean water.)

The round-trip impulse response function (IRF) in the water can be
computed from the downwelling distributions wusing the principle of
"reciprocity" (Chandrasekhar 1960). Reciprocity is a statement of symmetry or
reversibility which, when applied to airborne lidar, implies that the ensemble
of viable scattering paths in the water is identical for downwelling and
upwelling radiation, because the exiting photons must leave the medium in the
opposite direction from which they entered in order to reach the distant
receiver colocated with the laser source. In other words, reciprocity
requires that the statistical ensemble of the unmodelled upwelling paths in
the direction of a distant receiver for photons reflected at the bottom be
identical to that for the simulated downwelling paths from a colocated
transmitter. This is not a declaration that the downwelling and upwelling
paths are physically identical, but rather that the set of simulated
downwelling photon tracks can be regarded as representative for both cases.
The subset of the downwelling paths utilized by upwelling radiation is
determined by the weighting function for the bottom reflection.

.To obtain a round-trip imphlse response function in the water, the
computed impulse response d(tp) for downwelling transport can be convolved
digitally over the upwelling distribution, u(tp). For an assumed Lambertian
bottom reflection distribution, the upwelling distribution is computed by
multiplying the weights of downwelling photons reaching the bottom by the
cosine of their arrival nadir angles. The convolution result is the round-
trip IRF at the water/air interface. This result, however, does not include
the subsequent variation in the air-path length to the distant receiver across
the upwe1Ting surface distribution. This is an important effect which

13



significantly alters the shape of the IRF, except perhaps at nadir where the
air-path variation is not as great, and it cannot be neglected. For off-nadir
angles, the shortest total round-trip path, as seen in Fig. 6, is no longer
the one including a vertical path to the bottom, but rather, due to the
shorter air path, one in which the photons arrive at the bottom closer to the
aircraft. Thus, highly scattered energy which would have returned in the
trailing edge of the IRF actually defines the 1leading edge. With the
convolution approach, the temporal response varies in an unknown manner across
the upwelling distribution, and the distant receiver IRF cannot be calculated.

In order to calculate the IRF at a distant, off-nadir receiver, one must
know the time history of each returning photon and its 1location in the
upwelling surface distribution. This can be accomplished by using the concept
of reciprocity in a slightly different, more discrete way. As before, the
simulated downwelling paths are judged to be representative of the upwelling
paths for photons which will exit the water in the direction of the receiver,
and specific upwelling paths are selected by Lambertian (cosine) weighting of
the downwelling paths. Rather than implicitly computing the effect of all
possible path pairings of the downwelling photons by convolution, one can form
each possible path pair directly, as seen in Fig. 7 for two sample paths.
Propagation delay times of paired paths are combined with their appropriate
geometric air-path delays from the surface exit location to the receiver. For
selected fields of view, historgams of these total transit delay times are
formed to produce the receiver IRFs.

Since the set of all possible path pairs is not statistically
independent, a smaller subset of these pairs can be used (to save computer
time) with very little loss in information. Several variations of photon
number and pairing combinations were examined in order to find the most cost-
effective approach. Reported results are based on 1000 downwelling photon
paths paired with a block of 25 randomly selected upwelling paths for a total
of 25,000 round-trip paths. This is a minimum acceptable number, as the
resulting IRFs are somewhat noisy for cases of high attenuation, i.e.,
concurrent low w, and high o«D. A larger number of photons and/or pairings
would be beneficial, but a much larger set would be required to significantly
improve performance.

14
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2.2.4 Inhomogeneous Media

The simulations were primarily performed for homogeneous water in which
the density and nature of the scattering particles are independent of depth.
It is well known, however, that significant departures from homogeneity occur
frequently in coastal waters. It was important, therefore, to assess the
error magnitudes caused by using homogeneous case biases when significant
departures from homogeneity occur. The existing Monte Carlo simulation
program was modified (Guenther and Thomas 1981c) to permit simultaneous
estimation of impulse response functions for several exaggerated vertical
distributions of scatterers and absorbers, as seen in Fig. 8. The resulting
IRFs were digitally convolved with a 7-ns trianquiar source pulse to produce
the “environmental response functions" (ERFs). Linear fractional threshold
pulse locators were applied to the ERFs to determine the biases and the
differences in bias errors between the homogeneous case and the various
inhomogeneous models. The biases, even for these extreme inhomogeneities,
were found to differ from those of the homogeneous case by less than 10 cm.
The simulation results for homogeneous waters are thus considered to be
sufficiently representatfve for typical natural coastal waters.

2.2.5 Prograﬁ Validation

Because of the complexity of the scattering processes and geometry, it is
believed that analytic calculations can provide only approximations, and that
Monte Carlo simulation is the most direct approach and provides the most
accurate computation of the impulse response functions. The program must,
therefore, be validated on the basis of ancillary outputs which can be
compared with known quantities or relationships.

The Monte Carlo laser hydrography simulation is an extension of an
existing program whose various modules were debugged and validated through
extensive application to atmospheric scattering problems. Modifications were
made primarily to the scattering functions and geometry. It was thus
important to confirm known facts such as that the downwelling flux decays
exponentially with optical depth and that the rate of decay is appropriate for
the given optical properties. As seen in section 4.2, the functionality
between K/a and w, derived from the simulation was found to be in excellent

16
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agreement with experimental data from Timofeyeva and Gorobets (1967) and the
theory of Prieur and Morel (1971). In addition, the spatial and temporal
distributions are consistent with simplified analytic propagation models; and
the subsequently derived biases for nadir entry are in good agreement with the
analytic estimates of Thomas and Guenther (1979). These successful
predictions lend credence to the overall results. \

Sufficient photons were simulated to insure that the standard error in
sampled quantities, such as energy in the IRF time bins, was generally less
than ten percent, regardless of the random number sequence, for parameter
ranges of interest. Results for w,=0.4 did not meet this criterion and were
rejected from further use. High oD IRFs with w,=0.6 were also slightly

noisier than desired.
2.3 Simulation Outputs

For each of the two phase functions, six simulation runs (with nadir
angles in air of 0, 10, 15, 20, 25, and 30 degrees) were performed, for a
total of twelve runs. .To ensure comprehensive results sets, simulations over
full ranges of o (2 - 16) and w, (0.6 - 0.9) were run for each case. Five
values of optical depth and three values of single-scattering albedo were
employed in each simulation run so that 15 sets of results were generated in
each run. Spatial and temporal bottom distributions were printed for each
case. A data base containing 180 normalized impulse response functions, each
resolved into 50 time bins, has thus been created.

Typical IRFs are seen in Figs. 9, 10, and 11. Much of the evident
simulation noise will be smoothed out by subsequent convolution with a typical
source pulse, as seen in the following section. The abscissae are in units of
vertical transit time, t,. The conversion to actual time, which is depth
dependent, is t(ns) = 4.44 t, D(m). The IRF widths thus scale linearly with
depth. For the "NAVY" phase function and a single-scattering albedo of 0.8,
Fig. 9 shows the effect of nadir angle for a fixed optical depth of 8, while
_ Fig. 10 presents a progression of optical depths at a 20° nadir angle. The
effect of single-scattering albedo is seen in Fig. 11. The durations of the
IRF leading and trailing edges are seen to increase substantially as nadir
angle, optical depth, and single-scattering albedo increase.
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2.4 Actual Response Functions

For finite source pulses, the temporal responée functions are calculated
by convolving a selected source function with the appropriate impulse response
functions. Realistic 1lidar receiver dinputs or ‘"environmental response
functions" (ERFs) have been computed by digitally convolving the IRFs, scaled
to depths of 5m, 10 m, 20 m, and 40 m, with a 7-ns (FWHM) triangular source
pulse which is representative of laser pulses from a state-of-the-art, high
repetition rate, frequency-doubled Nd:YAG laser. Depth measurement biases for
twelve different combinations of signal processing and pulse Tlocation
algorithms have been calculated from these ERFs. The ERFs and their
associated peak powers and biases are archived on magnetic media for future
use.

Figures 12 and 13 present 20-m ERFs derived from the IRFs illustrated in
Figs. 9 and 10. The simulation noise has been significantly smoothed by the
convolution. For very narrow IRFs, the ERFs are similar to the source pulse;
for broad IRFs, the ERFs are similar to the IRFs. Most cases of practical
application 1lie between these 1limits, and the ERF shapes are a unique
cbmbination of both. For a source function significantly different from a
7-ns triangle, the ERFs and resulting biases would need to be recomputed by
convolving the new source function with the depth-scaled, archived IRFs.
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3.0 SPATIAL RESULTS
3.1 Bottom Distribution

Scattering in the water column causes the incident beam to spread out
spatially into an expanding cone. The extent of the spreading depends in a
complex manner on the geometry, the optical depth, the phase function, and the
single-scattering albedo of the water. For off-nadir angles, the energy
density distribution is significantly skewed toward the vertical due to
reduced attenuation, as seen in Fig. 14. This plot was generated by
integrating the arriving energy at the bottom in a series of strips
perpendicular to the direction of fhe aircraft. The skewness is more
pronounced for higher optical depths, higher off-nadir angles, and more highly
scattering phase functions such as "NOS". This early-arriving energy has a
large effect on the shape of the impulse response function.

Quantitative relationships for the spatial extent of the beam have
previously been developed by analytic approximation and physical
measurements. Concise energy distributions for a variety of water types were
measured in a laboratory tank by Duntley (1971).  Unfortunately for our
purposes, these results were based on a detector whose shape was a spherical
“"cap", all of which was at a constant distance from the laser source. The
geometry of interest for laser hydrography is a tilted plane. A simple
analytic expression based on small angle forward scattering approximations
reported by Jerlov (1976) has the same drawback, in that it does not treat the
increased optical depths for off-axis paths. Not surprisingly, therefore, his
radial energy distribution predictions are in fair accordance with the Duntley
measurements, although somewhat larger due to the simplistic assumptions.

Energy distributions for a planar detector (consistent with airborne
laser hydrography geometry) have been estimated as an ancillary output of the
Monte Carlo propagation simulation. Plots of 50% enerqy and 90% energy bottom
distribution diameters, dg, normalized to a vertical water depth, D, are shown
in Fig. 15 (left axis) for nadir entry and several values of wy. The curves,
which are averaged between NAVY and NOS phase functions, are labeled by the
nth percentile energy fraction contained within. Curves for RMS diameters
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fall between the two values illustrated. The Duntley curves for 50% and 90%
energy fractions are included for comparison. A curve derived from the Jerlov
relationship, which yields an RMS diameter, is also included for w, = 0.8.

A fundamental and important functional difference is noted between the
Duntley and Jerlov results to a spherical cap and the simulation results to a
plane. The Duntley and Jerlov fractional diameters continue to rise with
increasing optical depth, while the simulation results saturate. This
behavioral difference is attributed to the disparate geometries. In the
Duntley experiment, the off-axis radiation traversed the same path length as
the on-axis radiation. For a planar target, the added attenuation length for
non-axial paths will cause a significant reduction in the signal magnitude
received at larger angles. This results in a reduction of the effective
"spot" diameter -- particularly for large optical depths. This differential
path length effect is much more pronounced for dgg than for dgg due to the
larger net angles, and the Duntley dgg results consequently differ from the
simulation by more than the dgg results. It can be seen that for the large
optical depths, the simulation results indicate that the diameter of the
50% energy fraction at the bottom is roughly half the water depth, and the
diameter of the 90% energy fraction 1is somewhat greater than the water
depth. Mean and RMS diameters fall between these bounds.

3.2 Horizontal Reso]ution

Although one thinks of a laser beam as being a highly collimated probe,
such 1is not the case in water. The beam 1is scattered by entrained
particulates into an expanding cone whose size increases as the scattering
optical depth of the medium increases. Based on the above results, the
effective angular beam width at the bottom for a 50% energy fraction is about
2 tan‘1(0.25) = 28°, (Ha1f the pulse energy is a suitable criterion for -
purposes of selecting the receiver field of view (FOV) to sustain penetration
potentia1, as will be seen shortly.) This means that an airborne lidar will
not provide detailed profilimetry with a horizontal resolution of several
meters at typical operating depths in the 20 m - 40 m range. The soundings,
rather, are center-weighted averages over an area with a diameter of roughly
half the water depth. This fact is somewhat misleading, however, in that
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small but not insubstantial shoal objects such as coral heads or large rocks
will nevertheless reduce the measured depth because leading edge puise
location algorithms are sensitive to the early-arriving energy. If somewhat
higher resolution were required for some special task, a narrower effective
beam width could be obtained by limiting the receiver FOV. The tradeoff is a
concomitant loss of peak return power and, hence, penetration capability. In
optically shallow waters, this loss might be an acceptable compromise.

3.3 Upwelling Surface Distribution

The principle of reciprocity dictates that the upwelling, bottom
reflected energy traverses a set of paths statistically similar to the
downwelling paths. This means that the diameter of the surface distribution
of reflected bottom energy can be derived from the convolution of the bottom
energy density distribution with itself. The resulting surface diameter of
upwelling bottom return energy will be somewhere between one and two times the
equivalent bottom diameter, depending on the exact shape of the distribution.
For a Gaussian distribution, the factor is v2. Surface diameters for this
approximation are indicated on the right-hand axis of Fig. 15. For an
estimated surface diameter, ds; of the selected bottom-reflected energy
fraction for nadir entry, the 50 % energy criterion is dg(50)=0.7D, and for a
90% criterion, d4(90) is over twice that.

3.4 Receiver Field of View

As seen in Fig. 15, the field-of-view (FOV) requirement depends strongly
on which measure of spot "size" is used. The primary effect of the FOV is the
determination of the bottom return signal-to-noise ratio (SNR) and, hence, the
maximum useable depth or "penetration" capability. If the FOV is too small,
the peak bottom return power and associated maximum penetration depth will be
reduced. For nighttime operation, a larger than necessary FOV is benign, but
.in daylight, an excessive FOV will increase the solar noise level and, again,
reduce penetration. The FOV "requirement" is thus the FOV which maximizes the
SNR or, more simply, that which is just large enough not to significantly
reduce the peak bottom return power.
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It is important to recognfze the distinction that for envisioned pulse
location algorithms, the depth penetration potential, and hence receiver FOV,
are dictated by the peak power of the bottom return, not the pulse energy.
The relationship between these two measures is dependent on the width and
shape of the environmental response function (ERF) or bottom return. These,
in turn, are determined by the character of the source pulse and of the
impulse response function (IRF) of the propagation. In other words, the exact
receiver FOV requirement for a given set of circumstances is a function not
only of the environment, but also of the source pulse width. In practice,
however, it is sufficient to design the optical system to meet the spatial
needs of the large optical depth case, as will now be demonstrated.

The receiver FOV requirement can be estimated by observing the behavior
of the Monte Carlo spatial and temporal distributions. The Monte Carlo
results of Fig. 15 are repeated with an added highlight in Fig. 16. For small
physical and optical depths, say two to four, the IRF is short, and the ERF
approximates the source pulse. Any loss of energy results directly in a loss
of peak power because the ERF cannot become narrower than the source pulse.
For this case, therefore, the d /D required would derive roughiy from the dgq
curves. For large physical and optical depths, the ERF takes the character of
the IRF and 1is significantly wider than the source pulse. Moderately
restricting the FOV will reduce the pulse energy, but -not the peak power, by
truncating the tail of the IRF, as seen in Fig. 17. This is a beneficial
feature because, in deep water where the FOV requirement is the greatest, the
pulse stretching is also greatest. A modest fraction of the pulse energy from
the trailing edge can be discarded without a significant drop in 'the peak
pulse power -- thus reducing the necessary energy fraction and the actual FOV
requirement. By examining the effect of reduced FOV on such IRF shapes, it
has been noted that the peak height is not significantly reduced until dg/D
becomes less than about 0.7, which , from Fig. 16 corresponds roughly to a 50%
_energy fraction.

The heavy band drawn across Fig. 16 is an estimate of the overall dg/D
requirement according to these arguments. The function rises only sliightly
toward small optical depths because, even though the required energy fraction
is larger, the relative expansion of the beam due to scattering is less. For
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a practical system, the receiver FOV can be safely set to the high oD value
where dg/D is smallest, since at smaller optical depths a siight loss of power
will not significantly affect performance. The best estimate for a practical
FOV requirement is thus a surface spot diameter for the receiver of about 0.7D
which corresponds roughly to a 50% energy criterion at large optical depths,
as previously noted. For an aircraft altitude, H, the necessary full angle
FOV would be yrgy 2 dg/H = 0.7D/H. The FOV desired for a typical aircraft
altitude of 300 m and a depth of 35 m would thus be about 80 mr. A FOV of
this size is fairly large for a compact optical system, but nevertheless
achievable.

This result is relatively independent of nadir angle. For off-nadir
angles, the irradiated bottom dimension is larger roughly by sec¢ due to the
additional slant distance to the bottom, but the FOV needed to encompass the
resulting surface spot is smaller by cos® (where the angles are as defined in
Fige 1). For the relatively small angles of interest, these functions
effectively cancel.

The effect of FOV on propagation-induced biases will be seen in section 5
to be small. The reason for this is the fact that significant biases would
exist even for zero FOV (ignoring, for a moment, the corresponding lack of
signal strength), because the leading edges of the IRFs are not greatly
affected by FOV. The concept that the IRF has a certain minimum width for
zero FOV stems from the fact that photons emerging from the medium at the
point of entry may have undergone substantial multiple scattering and
consequential pulse stretching on their round trip to the bottom and back.
Reciprocity in this case requires that the photons must effectively retrace
their downward paths to exit the medium at their entry points in the exact
opposite direction. In this special case, the convolution of the downwelling
distribution with a cosine-modified version of 1itself degenerates into a
simple product with the times doubled for the round trip. This concept has
been used to estimate the zero-FOV. IRFs from the downwelling temporal
distributions. An example is seen in Fig. 18 plotted along with the infinite-
FOV IRF. It is clear that for a leading edge detector, the biases (the
detection time compared to the reference time) may be reduced only slightly if
at all.
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4,0 ENERGY AND PEAK POWER RELATIONSHIPS
4,1 Introduction

The economic viability of an airborne laser hydrography system depends on
the existence of 1large areas of relatively shallow water from which
satisfactory bottom returns can be detected. The basis for determining the

performance of a communications system is the received signal (energy or
power) equation. The level at which this signal becomes unacceptably noise
contaminated determines the maximum range. In the case of airborne lidar
bathymetry, a pulsed laser transmitter is communicating with a colocated
receiver via a complicated channel which consists of two passes through the
atmosphere, two passes through the undulating air/water interface, two passes
through a highly scattering and absorbing water column of variable clarity,
and a bounce off a poorly refiecting bottom. The shape, duration, and
magnitude of laser hydrography bottom returns depend in a complex way on the
source pulse, the beam nadir angle, the depth of the water, the optical
properties of the water, and the bottom topography.

Over the years, the return power equation has appeared in a wide variety
of forms, because the propagation in the water has not been well understood,
and soﬁe complex effects can only be approximated. Refinements and
improvements continue to be made as new data become available. In this
section, several factors will be added or altered to account for the effects
of propagation-induced pulse stretching. In order to predict penetration
limitations for an operational system, energy distributions and impulse
response functions parameterized on the aforementioned variables for a flat
bottom have been calculated from the Monte Carlo simulation results.
Simulated bottom returns (environmental response functions) have been
determined by convolving the impulse response functions with a 7-ns FWHM
triangular source pulse. Bottom return energy and peak power relationships
derived from these results are reported in this section.

4,2 Signal Energy

In its basic form, the so-called "radar" equation for the airborne laser
hydrography bottom return energy can be written as
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%
where: Ep is the received pulse energy,

Ey is the transmitted pulse energy,

n is the total optical system loss factor,

R is the bottom reflectivity,

%z is the solid angle subtended by the receiver,
g is the effective solid angle of the bottom-reflected energy

above the air/water interface,

F is a loss factor to account for insufficient receiver FOV,
k is an attenuation coefficient which depends on water clarity, and
P is the effective slant path length in water to the bottom.

Losses in the atmosphere due to absorption and scattering are small (ten to

twenty percent) for altitudes of interest in clear air and have been omitted
for the sake of simplicity. The two percent losses through the air/water
interface have also been neglected. Individual factors in this equation will
now be discussed in detail, beginning with the exponential term.

4.2.1 Nadir Entry

The most elementary output from the simulation is the fractional number
of incident photons reaching the bottom, i.e., the spatially and temporally
integrated energy arriving at the bottom. Those photons not reaching the
bottom are lost to either scatterihg or absorption. If one plots the log of
the downwelling energy for nadir entry versus vertical optical depth, oD, for
a unit energy impulse, as seen in Fig. 19, the results for both phase
functions are families of nearly straight lines with slopes dependent on the
single-scattering albedo, wy. The regions of joint high o and low w, are
dashed because of 1larger statistical variances in the results for the
extremely weak returns from these high attenuation circumstances. The
variances could have been reduced by running the simulation longer, but it was
not deemed necessary because such small values of w, are not expected to be
found in coastal waters.
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Integrating over depth the defining relationship for the diffuse
attenuation coefficient, K, for nadir entry into homogeneous water leads to an
expression for downwelling energy, Eg, of the form Eg = exp(-KD), where D is
the depth. If the asymptotic slopes of the Fig. 19 downwelling energy curves
are denoted as Y(mb,v), where ¥ = P(y) represents the phase function, then for
nadir beam entry, Ep « exp[-y(wy,¥)aD]. It is clear from these equations that
the slopes are thus Y(mo,‘l’) = %(mo,?). The slopes of the simulation
results in Fig. 19 actually increase slightly with increasing optical depth,
as K itself increases slightly with depth in homogeneous water. This is
because K is not an inherent water property and, at shallow optical depths,
increases due to a scattering-induced increase in average path length to a
given vertical depth. This effect is further demonstrated in Fig. 20, a plot
of simulation results for the mean secant of photon arrival angles as a
function of optical depth. The largest portion of the increase occurs at
relatively small optical depths, and the log energy curves are thus nearly
straight at higher optical depths. In this report, the symbol, "K", will be

"used exclusively for the medium-to-high optical depth or "asymptotic" value of
the diffuse attenuation coefficient.

The log energy curves can be seen to extrapolate back to a value slightly
above the origin {(at zero optical depth) which represents a linear factor of
roughly 1.5. Because the curves extrapolate near to the origin, the average
slope and the instantaneous slope are nearly equal at all aD, and K/a is thus
nearly independent of oD as seen detailed in Fig. 21. This permits a
universal plot of K/a versus w, for the two phase functions as seen in
Fig. 22. The phase function effect is seen to be relatively small.

This K/a relationship is an extremely important functionality because it
clearly demonstrates that the ratio of the two most commonly measured
attenuation coefficients is determined solely by a third parameter, the
sometimes ignored single-scattering albedo. The relationship is also
important because it provides the best opportunity for validation of the
simulation outputs, as noted in section 2.2.5. Timofeyeva and Gorobets (1967)
derived K/a(w,) experimentally for a number of scattering media. The
Timofeyeva curve plotted on Fig. 22 is for milk which was claimed to have
scattering properties similar to those of seawater. The simulation results
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are seen to be in good quantitative agreement and demonstrate the correct
trend with phase function, assuming that milk has a slightly more widely
scattering or "dirtier" phase function than "NOS" water. These curves are
also in good agreement with the theoretical results of Prieur and Morel (1971)
for "typical oceanic water".

The bottom reflected pulse energy, ER, returned to a distant, airborne
receiver was calculated by temporally integrating the round-trip impulse
response functions derived from the simulation for an assumed Lambertian
bottom reflection. For a large receiver FOV, the plots of Ep versus oD, as
indicated on the "inside" axis of Fig. 19, are virtually identical to the Eg
versus oD plots with D replaced by 20 to account for the round-trip
distance. The received pulse energy can thus be represented as
Eq = Eg? = exp(-2KD).

It is interesting to note that this relationship implies that the
effective attenuation coefficient is K in both upwelling and downwelling
directions, even though the incident downwelling beam is highly collimated,
while the bottom reflection was assumed to be diffuse. The reason is that the
only photons of interest are those which leave the water in the exact opposite
direction from which they entered, in order to reach the distant colocated
receiver. The scattering of photons in the water is independent of directicn,
and the paths are, in effect, reversible. Reciprocity states that the
ensemble of allowed scattering paths through the water for upwelling radiation
is thus identical to that for downwelling radiation. The utilization of the
downwelling paths by wupwelling radiation is determined by the bottom
reflection weighting function. The result ER = exp(-2KD) is indicative of the
fact that the Lambertian weighting function for the bottom reflected upwelling
distribution is similar to the downwelling arrival angular distribution. ]

It is clear from Fig. 19 and from the above equation that for nadir entry
the large FOV “"system" attenuation coefficient for received energy is K, the
diffuse attenuation coefficient of the water. This familiar expression has
often been used in signal equations for describing the return “strength" for
airborne lidar systems. We shall now see how this must be modified to take
off-nadir operation into consideration.
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4,2.2 Off-Nadir Entry

The effect of off-nadir beam entry angles (9 in air refracted to ¢ in the
water) is complex and depends on the depth and water optical properties. At
low optical depths, an off-nadir input beam undergoes little scattering, and
the loss per unit vertical optical depth is greater than at nadir due simply
to the geometrical increase in the physical path length by a factor of sec¢.
As the optical depth increases, scattering causes the beam to spread into a
cone of increasing angle about the mean path.l Photons on longer paths
diverted from the central "core" tend to be eventually absorbed, while those
on shorter paths in the "undercutting" region undergo less average absorption
which increases their chances of survival.

The center of the core thus curves toward the vertical with increasing
optical depth because that is the shortest distance and least lossy path.
(This effect is seen underwater by scuba divers who note that, regardless of
the time of day, the sunlight always appears to come from directly overhead in
all but the shallowest water.) The effect is also seen in Fig. 20 where the
mean secant for off-nadir entry begins at sec¢ but, at high optical depth,
saturates at a value equivalent to that for nadir entry. For small entry
angles, the core axis can become (nearly) vertical at moderate optical depths,
while for large entry angles, very large optical depths are required. As seen
in Fig. 20, the center of the core tends toward the vertical more quickly for
small w, due to greater absorption of the longer paths. The net result is
that the effective distance to the bottom for off-nadir entry lies between
Dsecé and D and can be described as Dsec¢eff, where ¢eff(e,aD,wo,W) is the
"effective" water nadir angle which, as noted, depends on the entry nadir
angle, the vertical optical depth, the single-scattering albedo, and the phase
function,

The effect of off-nadir beam entry angles on the bottom energy and on the
energy returned to a distant, large field-of-view receiver is seen in Fig. 23
for the NOS phase function. The curves for a very large 45° incident nadir
angle are seen to be nearly straight and exhibit slightly higher slopes than
for nadir entry but lower slopes than would be expected for the unscattered
ray. They can thus be represented as Ep = exp(-2KDsec¢ors). From Fig. 23, at
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wy = 0.8, for example, it can be calculated that secsesrs = 1.10
(deff = 24.8°). For smaller incident nadir angles typical of airborne laser
hydrography operations (6=15°-25°), the value of seCéofs approaches 1.0 for
all but the shallowest of optical depths. (The secant of 10°, for example, is
1.015.) For practical cases, the pulse energy returned to a distant airborne
receiver can thus be expressed simply as Ep = exp(-2KD), independent of
incident nadir angle.

Scattering spreads the beam out spatially to a great extent and dictates
a not insubstantial receiver field-of-view requirement in order to maintain
the F factor near unity, as seen in section 3.4. An insufficient FOV which
spatially excludes a portion of the returning energy reduces F below unity in
a highly complex way which depends on the FOV, aircraft altitude, nadir angle,
water optical parameters, and depth. This effect could alternately be viewed
as an increase in the effective system attenuation coefficient (Gordon 1982)
dependenf on the same variables.

The solid angle subtended by the airborne receiver from a nadir angle, 6,

and an altitude, H, is Q'p = Aqcos?e /HZ. For an assumed Lambertian bottom
reflection, the effective solid angle in the water is @, = n. Upon refraction
through the air/water interface this angle increases by a factor nw2
is the index of refraction of water, so that Q'p = nw2 Q = nwzn. In the
limiting case of high altitude and shallow water depth, the solid angle ratio

would then be R'p/Q'g = Ag cos26 / "w2 H2, For the general case where the

s wWhere Ny

water depth is not necessarily much smaller than the altitude, it has been
shown (Levis et al. 1974) that the exact expression can be written as
/g = AR/n(n, H sece + D sec¢)2. This can be approximated by the simpler
expression Qp/Qp 2 ARcosze /v (n, H + D)2, which gives virtually the same
results for typical parameter values. For practical nadir angles, depths, and
water clarity, the received energy equation thus takes the form

Er nRF Ay cose o

Ep = . 2
R 'tr(an+D)7Z ¢ 2

Energy-based pulse location algorithms such as correlators or centroids
are not appropriate for precisely timing underwater light propagation because
pulse stretching strongly affects the shape and duration of the pulses.
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Typical leading-edge power detectors such as a fractional threshold are also

affected by pulse stretching, but to a much Tlesser degree. A not
insignificant fraction of the return energy is not "useful" because it occurs
in the elongated tail of the return pulse. It is important, therefore, to
investigate the effect of pulse stretching on the peak power of the return
pulses as a function of depth and water optical properties.

4,3 Signal Power

Since pulse detections are based on the instantaneous pulse power, not
the integrated puise energy, the received energy equation must be converted to
one which describes the peak pulse pbwer. It is clear that peak power and
pulse energy are proportional, i.e., obey the same functionalities, as long as
the pulse shape remains unchanged. Puise stretching removes that
proportionality. Although the pulse may contain the same total energy, the
fact that it is distributed over a longer time interval causes its peak power
to be reduced. Furthermore, for a fixed o0, the absolute amount of
stretching, i.e., the actual pulse length, is, from simple geometry, linearly
proportional to the physical depth, D. For this reason, underwater
propagation causes not only a loss of energy as a function of optical depth,
but the associated pulse stretching causes a further loss of peak power with
respect to the pulse energy, which varies both as a function of the physical
depth and the inherent optical parameters.

For a finite transmitted source pulse, the return pulse at the receiver
is the convolution of the source pulse with the impulse response function
(IRF) of the target geometry. The result of this convolution, which has been
termed the environmental reSponse function (ERF), is the theoretical input to
the airborne receiver. The energy equation is the bounding case for little’
relative pulse stretching, where the ERF is nearly identical to the source
pulse. For small optical depths where pulse stretching. is minimal, the
impulse response will be very short compared to practical source pulses of
interest in the 5-10 ns FWHM range. For this case, and for the case of very
long source pulses, the ERF is nearly identical to the incident source pulse,
and the return energy equation could be used as a power equation with E's
replaced by P's. For the other bounding case of large optical and physical
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depths, the IRF can become significantly longer than the source pulse, and the
ERF will be similar to the IRF. A new power equation can be developed for
this case, as will now be seen. The general result for practical source
pulses, which falls between these extreme bounds, will be described
thereafter.

4.3.1 Impulse Response Results

Relative IRF peak power plots for the two phase functions at nadir entry
are illustrated in Fig. 24 for constant physical depth. Several features are
apparent if one compares these results with Fig. 19. First, the phase
function effect is somewhat larger than for energy. Second, for high u,,
these semi-log plots tend to curve upwards at high ol; their slopes are
initially steeper than for the corresponding received pulse energy curves, but
at high oD the corresponding slopes become more nearly equal. For low w,, the
plots are nearly straight and only slightly steeper than the corresponding
energy curves. This behavior can be understood by examining the following
model.

Because most of the semi-log plots of IRF peak power versus optical depth
for constant physical depth are relatively straight, one can again choose to
describe the behavior as exponential and define an average system attenuation
coefficient, kp(aD) for received power, PR, at an optical depth oD from the
slopes as follows:

. kp kp K kp
-%' oD -2 —ab _ -2 —aD _ -2 KD
PR D=const a X a =e ° K .

(3)

Note that the latter form is similar to the energy equation with the addition
of the kp/K factor which expresses the additional attenuation of peak power
due to pulse stretching for a fixed depth. To the extent that several of the
high w, plots are slightly curved, the normalized average power attenuation
coefficient to a given optical depth will be a weak function of optical depth
as seen in Fig. 25. These values of kp/a as a function of oD can be combined
with K/a values for the appropriate w, from Fig. 22 to yield kp/K curves as
seen in Fig., 26.
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This plot clearly demonstrates the dramatic extent to which the IRF power
attenuation coefficient for fixed depth can exceed the diffuse oceanographic
attenuation coefficient which is the system energy attenuation coefficient.
Note. that, depending on the inherent water optical parameters, the ratio
ranges between 1.0 and 3.0 (and could be even higher if w, were permitted to
range as high as 0.95 for very dirty "Chesapeake Bay-type" water). The effect
of w, in the 0.7 to 0.9 range is very strong. The largest values occur for
high w, which involve the greatest scattering to absorption ratio, and hence
the greatest pulse stretching, The optical depth effect is greater for higher
Wy« The phase function effect is seen to be comparatively small for all
cases. Analytic expressions for kp/K for this limiting IRF case were reported
in Guenther and Thomas (198la).

The off-nadir IRF peak power curves for the NAVY phase function are seen
" in Fig. 27 for constant D. At low o the incremental power loss (slope) is
greater for larger nadir angles due to. the added physical path length to a
given vertical optical depth. At high oD, where the mean flux approaches the
vertical, the's1opes approach the nadir case.

The above results have been derived for the IRFs scaled to a fixed
depth. For a given oD, the IRF pulse stretching scales linearly with depth
due to the geometric dependence of the time delays for returning photons. The
received peak power for an impulse input to a water column of arbitrary depth
can thus be written as Pp « PTexp(-kaD)/D = PTexp[-Z(kp/K)KD - 1n D]J. The
form on the right-hand side expresses the fact that the general IRF power
equation is the energy equation modified by the addition of two terms in the
exponent, kp/K and -1n D. Both of these reduce the peak power to pulse energy
ratio since kp/K>1.

This functionality can be rewritten algebraically as

expl-aD(25 2 + 100 ))

(4)
and the absolute 1log-slope of the IRF power expression 1is thus the

parenthetical quantity. For fixed depth plots such as Fig. 24, since K/a is
constant for fixed w,, the upturn of the high w, curves at high oD comes from
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the 1/a factor in the second term which is of significant magnitude compared
to the first. For lower u,, the second term is relatively smaller compared to
the first, due primarily to a higher K/a ratio, and the overall effect of this
functionality is thus minimized. Similarly, if the IRF peak power versus oD
curves are plotted for constant «, it can be seen from the slope expression
that the high «, curves will also turn up in a similar fashion as 1nd/D
decreases with increasing D. This bounding situation is depicted schemat-
jcally in Fig. 28 along with the energy curve which represents the opposite
bounding case of very long source pulse.

4.3.2 Environmental Response Results

For a practical system with a 5-10 ns source pulse, the peak power curve
will lie between these two extremes: as pictured in Fig. 28, for low optical
depths it will approximate the energy case, and for high optical depths it
will converge to the IRF case. The rate of transition between these extremes
depends on the incident 1laser pulse width. Pulse stretching and the
associated loss of power compared to energy will not be evident until the
duration of the impulse response becomes significant compared to the width of
the incident pulse. This will begin to occur as both the physical depth and
the optical depth increase. At large physical and/or optical depths, the
impulse response will become broad, and the actual loss curve will tend toward
the impulse response 10ss curve.

Specific peak power results have been generated for ERFs obtained by
convolving the Monte Carlo-derived IRFs with a 7-ns (FWHM) triangular source
pulse. As seen in Fig. 29 for 6=15°, for oD < 16 and to depths of at least
40 m, the peak power results can be described simply by exponentials with an
effective increase in the system attenuation coefficient. This can be
represented by the form Pp « exp(-2nKDsec$), where, in general, n=n(s,u,,6)
and ¢ is the nadir angle of the unscattered ray in the water. This is an
understandable result based on the schematic representation in Fig. 28. The
values of rﬂs,ub,e) are derived from semi-log plots of peak power versus
optical depth for various fixed values of 9, wy, and a as seen in Fig. 29.
The slopes of these lines are quite constant except at very low oD, and the
nadir angle effect is quite small as noted by the dashed curves for 0° and 25°
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at a=0.8 m"l. The slopes are modeled as -2nKoElsec¢; by measuring the slope
and knowing K/a from wu,, one can determine the values of n. In this way, the
secdors effects (as opposed to sec) are automatically included in the
calculated values of n.

The calculated values of n are plotted in Fig. 30 for nadir incidence as
a function of a and parameterized on w,. The dependence on the scattering
phase function is small ‘except at w,=0.9, which is separately noted on the
figure. The residual nadir angle effect is quite small, as seen by the dotted
line for 25° at «,=0.8. A plot such as Fig. 30 can be slightly misleading,
because it represents exhaustive combinations of all possible parameter
values, many of which are highly uniikely in natural waters. The ranges of w,
values typically associated with given a's in the environment are denoted in
Fig. 31 as heavy lines. This changes the apparent behavior of n considerably,
from one which decreases from large values for increasing a« to one which rises
gradually from small values with increasing a.

Various levels of approximation may be used for describing n depending on
the estimation accuracy desired. A decent first-order approximation for
natural waters is n = 1.25 for all cases. A slightly better fit, good to
+0.1, is provided by the expression n =21 + 0.27 a0'24, valid for all 6 and w,
but limited to a< 2 m~l. A more detailed fit can be obtained, if desired, in
the forms n=AaB or n=AsB, The 1latter is more rigorous
phenomenologically and was adopted. The most straightforward fits are
obtained with the A's and B's expressed not directly in terms of w,, but

(]
rather in s/a which is equal to wy/(w, - 1). The selected model is thus

n(s,u,,8) = A(s/a,8) s™B(5/3:9), (5)
The coefficients A and B can be expressed in the forms A=ci+cp(s/a) and

c
B=c3(s/a) 4, The fits for various ranges of beam entry nadir angle are found
in Table 1.
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Table 1. Regression coefficients for exponential power decay factor.
8 . | 1 ) c3 Ca

0° - 15° 1.02 0.032 0.032 0.79
15°¢ - 25° 1.03 0.035 0.042 0.69
25° 1.05 0.036 0.050 0.60
35° 1.11 0.024 0.072 0.54

One minor added refinement is possibie. The curves of Pp versus oD for
fixed a are slightly flatter at small oD's where they approximate the energy
case. The extrapolated slopes from higher oD thus intersect the Pp axis
(D=0) slightly above the actual value of Py. An equation of the form
PR = Prexp(-2nKDsec $) consequently underestimates Pp slightly. To correct for
this effect, the ratios of the extrapolated slope intercepts, Py', to Py have
been calculated and denoted as "m" such that Pp = m Py exp(-2nKDsecs). A plot
of m versus « for a range of nadir angles and w, = 0.8 is seen in Fig. 32.
The m values are not as well-behaved as the n's, but they need not be, since
they are linear rather than exponential factors. To a first order, one might
simply select m= 1.25. For typical operational circumstances of
0.7 < wy,<¢ 0.9, 0.2 < a<?2 m'l, and 15° < 8 < 25°, an estimate good to about
0.1 for either phase function is m 2 1.1 + 0.19 a. In reality, the magnitude
of this effect compensates for ignoring the air path losses and a little
practical system detuning. It can consequently be ignored, as well, except
for special cases where high accuracy is required, such as the estimation of
water parameters.

For a practical case with a 7-ns source pulse, the peak power received
from the bottom return, obtained by converting the received energy equation,
may thus -be described effectively as
' 2

_ Pr nR Fp Ag cos®e n(s,w_ ,8) K D sece
Pp = > e 0 , (6)
n(an+D)

where the n's are as reported previously.
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This signal rides atop the volume backscatter signal which decays rougﬁ]y
as exp(-2KD) with increasing depth. From the above form, it can be seen that
a so-called "extinction coefficient", E;, expected to be fairly constant for
all water conditions (for a given system with specified altitude, nadir angle,
etc.) can be defined in the form &, = nKD. Since pulse stretching causes the
peak bottom return power to decay at a rate which seems to be slightly faster
with increasing depth than the volume backscatter signal, the latter appears
to be a 1imiting noise source for nighttime operation.

The field-of-view factor, Fp, is different than that for the energy
equation, because, as described in section 3.4, a loss of energy does not
necessarily lead to a significant loss in peak power. An insufficient FOV
which spatially excludes a portion of the returning signal reduces the Fp
factor below unity in a highly complex way which depends on the FOV, water
parameters, depth, altitude, and the duration of the incident source pulse.
No detailed relationships have been derived for Fp other than to note the FOV
required to maintain a value near unity.

It is important to reiterate here (because of confusion and expediencies
in the past) that neither the bottom return energy nor the peak power depend
unambiguously on the optical depth, aoD. The optical depth alone cannot be
used to predict maximum penetration depths because these are seen to depend
explicitly on KD, and the relétionship between K and a is a very strong
function of u,. Furthermore, pulse stretching adds additional losses which
have been characterized as an increased exponential loss factor.
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5.0 BIAS PREDICTION
- 5.1 Methodology

In utilizing the forthcoming results, it is important to recall their
origins and the bounds of their validity.

1) The impulse response functions (IRFs) are qualitatively depth
independent and can be scaled to any water depth.

2) The so-called "environmental" response functions (ERFs) were generated
by convolving depth-scaled IRFs with a triangle-shaped source function of 7-ns
half-width. The ERFs are thus depth specific, and resulting biases are valid
only for source pulse widths not significantly different from 7 ns.

3) Biases depend strongly on signal processing techniques and pulse
location algorithms. Oepth measurement biases have been calculated from the
ERFs for two significantly different signal processing algorithms: 1linear
fractional thresholds and HALS' log/difference/CFD. Other procedures will
yield different biases. :

4) The simulation is for a homogeneous water column and flat, horizontal
surface and bottom. It was demonstrated, however, (Guenther and Thomas 198lc)
that even unrealistically large inhomogeneities in water optical properties
result in errors in bias estimation of less than 10 cm. Reported biases
include no surface return stretching effects such as geometry, waves, etc.
Errors due to waves must be handled separately.

5) Simulations were conducted -for what is considered to be bounding
ranges of key water optical parameters: phase function, optical depth, and
single-scattering albedo. Appropriate volume backscatter . signals were
appended to the leading edges of the ERFs for HALS-type processing because of
the significant effect of backscatter decay slope on pulse location for such
algorithms.

6) The simulation error in reportéd biases is estimated to be generally
under 5 cm.

5.2 Bias Computation

For a given set of depth-specific, simulated bottom returns (ERFs)
parameterized on beam nadir angle and water optical properties, the first step
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in calculating depth measurement bias predictions is the modeling of the
various signal processing and pulse location estimation procedures. After the
appropriate transfer functions have operated on the input signals, the
apparent depth is calculated from the time interval between the detection
locations of the surface return and bottom return pulses. For the reported
biases, the source pulse was used directly as the surface return pulse (a
mirror-1ike reflection from a flat surface), and a common pulse location
algorithm was applied to each. It is conceivable that separate optimization
of the surface and bottom return detection algorithms might be desirable. If
so; locating the two pulses at different thresholds, for example, would cause
an additional bias which depends only on the shape of the interface return and
which could be removed with a pre-calculated corrector.

Depth measurement biases were calulated from the ERFs for two diverse
types of pulse location algorithms: a straightforward amplitude threshold
proportional to the peak height applied to the linear input (the so-called
linear fractional threshold or LFT), and the complex HALS protocol which
involves logarithmic amplification for amplitude compression, a time-delayed
difference operation to remove the volume backscatter signal,- and pulse
Tocation by a specialized constant fraction discriminator (CFD) algorithm as
implemented on an available hardware chip. Further details of the HALS
processing procedures can be found in Guenther (1982). Each basic algorithm
is represented by multiple sets of biases corresponding to selected values of
imbedded parameters.

Linear fractional. threshold detections are obtained directly from the
ERFs. Because the HALS processing involves two time-delayed differences,
however, the resulting pulse detection time depends not only on the shape of
the ERF, but also on the log slope of the volume backscatter signal which
precedes it. The effect can be quite significant in "dirty" waters where the
backscatter slope is steep. In order to provide accurate bias predictors for
the case of HALS processing, the specific volume backscatter signal associated
with each ERF has been appended to the start of that ERF.

For a given ERF, the parameters oD, D, and w,.are specified. The value
of a is thus known, and given w,, the K/a ratio can be derived from the "best

59



fit" relationship shown in Fig. 22. K is thus uniquely defined for each
ERF. The decay of the volume backscatter power is exponential in time with a
log slope roughly equal to -cK (see section 6), where ¢ is the speed of 1ight
in water. For HALS processing, the volume backscatter signal for each ERF is
constructed in log space by extrapolating a line of appropriate slope backward
from the first point of the logged ERF. This composite signal is then further
processed, as follows.

Three waveforms associated with the log/difference/CFD process are seen
in Fig. 33. At the top is the logged ERF . input with associated volume
backscatter tail; in the middle is the output of the delayed difference
operation; and at the bottom is an internal CFD signal for which the positive-
going zero crossing is the detection point. The delayed difference operation
applied to the decaying volume backscatter signal produces a constant negative
level into the CFD which violates one of the assumptions associated with
performance of the CFD circuit. The negative input level, whose magnitude
increases with decreasing water clarity, causes delayed detections and leads
to added positive biases which depend on the delay times, water clarity,
signal-to-background ratio, etc. These perturbations of the propagation-
induced biases by the processing protocol automatically become part of the
final results, however, and need not be separately handled.

The bias calculation for any signal processing and pulse location
algorithm is based on the timing diagram shown in Fig. 34, where tp is the
time associated with the "true" slant range, and -t is the time associated
with the "apparent" slant range measure at the detection point. The”
"measured" bottom pulse location time, ty, for a given algorithm and the
“reference” time, tp, for the unscattered ray can be measured from any
consistent starting time, as long as it is the same for both, because only
their difference is important. The time base origin in Figs. 12 and 13
conforms to the arbitrary notation of Fig. 34 in which the source pulse is
assumed to start at the time of the impulse. The surface pulse half-width
(FWHM) is t, 2, and the surface pulse location time, tg, is measured from the
start of that pulse. It can be seen in.Fig. 34 that tp and tp are related by
the expression '
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tp=tg +ty +tg -ty - tW/Z' (7)
The slant range bias time, tg, is then
tg EtA-tD=tM-tR-ts+tw/2, (8)

and the associated depth measurement bias will be B = (¢ tg cos¢)/2, where B
is positive for "deep" biases and negative for shallow biases. To calculate
the bias time, tg, one obtains ty - tp from the processed bottom return pulse
and tg from the processed surface return pulse. As was noted in Guenther
(1982) for HALS processing, the detection time, tg, on a high signal-to-
background ratio (P,/B) triangular pulse is equal to the CFD delay. The CFD
delay has thus been used for tg in calculating HALS biases. This relationship
becomes less exact for P, /B T 10 and for significantly different pulse
shapes. If extremely weak or highly distorted surface returns were
encountered, a set of correctors (parameterized on Pm/B) would be necessary.
HALS biases are small but non-zero at oD=0 due to the Pa/B effect.

Biases were calculated for all combinations of physical depth, receiver
parameters, pulse-location algorithms, and relevant water optical properties
(phase function, optical depth, and single-scattering albedo). It can be
noted that the changes in bias predictors from the old sets in which the air
path was ignored are all negative (in the shallow direction), as expected, and
that the magnitudes of the differences increase with increasing nadir angle,
with increasing optical depth, and with earlier detection times. For large
optical depths, the bias changes at a 25° nadir angle due to inclusion of the
air-path effect vary from about 20 cm for the 50% threshold to about 90 cm for
the HALS algorithm with 6-ns delays. The nadir results, which were expected
to be relatively unaffected, agree to within abouf + 1 cm RMS.

The biases and their functionalities are discussed in the following
sections, and a complete set of biases is tabulated in Appendix A for future
reference. Earlier biases reported in tables and plots in NOAA Technical
Report OTES 3 (Guenther and Thomas 1981b) are outdated, as are the references
to a bias correction procedure using water optical parameters estimated from
the air. This new report supercedes and replaces the results and conclusions
in OTES 3 as well as expanding significantly upon its content.
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5.3 Bias Sensitivities

Because the depths are measured with 1leading edge pulse Tlocation
algorithms, the biases are based primarily on the photons which traverse the
shortest, and hence least attenuated paths. The shape of the leading edge is
thus 1largely determined by the scattering, rather than the absorption
characteristics of the water. It makes sense, therefore, to consider the
scattering optical depth, sD=wyaD, the mean number of scattering events to the
bottom, as a likely candidate for the major functional bias dependence,
regardless of separate values of w, and oD. Wilson (1979) showed similar
functionalities for the radiance and irradiance distributions.

This relationship is demonstrated with the NAVY phase function in Figs.
35 - 37 for LFT and Figs. 38 - 40 for HALS. Note for all figures: under ALG
for "“algorithm", the description block in the figures 1lists an "L" for LFT
followed by the threshold fraction in parentheses and a "C" for CFD followed
by values for P,/B and the CFD delay in nanoseconds, respectively. Al1 HALS
examples shown are for a difference operation with a 6-ns delay. The three
curves in each family are for w, values of 0.9, 0.8, and 0.6. The groupings
are relatively tight regardless of nadir angle, depth, or processing protocol,
although the groups exhibit less variation for LFT processing than for the
more complex and non-linear CFD processing. Similar groupings occur for the
NOS phase function but at somewhat different bias values.

This is a useful result because it reduces the number of bias-driving
parameters whose values are not known a priori from three (phase function, oD,
and u,) to two (phase function and wyoD). The potential utility of this
relationship is discussed in section 6. The figures supporting the text are
plotted with either optical depth or scattering optical depth as the
independent variable. Optical depth has been used at times for clarity or
convenience, often where a single "average" value such as w,=0.8 is plotted.
In such cases the results may be easily generalized by multiplying the
abscissa values by the appropriate wy.

The sD dependence is by no means "perfect" because of the effects of
signal processing. For example, with HALS-type processing, the effect of the
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volume backscatter signal competes with the w, effect. By itself, small w,
leads to more negative biases due to higher absorption and an emphasis on the
shortest path -- which is in the undercutting region. On the other hand, for
a given a, lower u, leads to higher values of K and larger negative input
levels to the CFD from the backscatter signal. This, in turn, leads to
delayed detections and subsequently more positive biases, particularly at
shallow depths and low Py/B. This is strikingly evident in the 5-m curves in
Figs. 35 - 40. The net results of this competition are depth and u, effects
which are somewhat different for HALS processing than for LFT.

The phase function effect is demonstrated in Figs. 41 and 42. For nadir
angles of 10° or more, the differences are typically under 10 cm between the
"NAVY" and "NOS" phase functions which are considered to be more or less
bounding for expected coastal waters. The bias differences are considered to
be small enough that an average value between the two can be used for bias
prediction. For that reason, much of the following demonstration of bias
sensitivities will highlight only one, the "NAVY" phase function.

The effects of the air nadir angle for depths of 5m, 10 my, 20 m, and
40 m are seen in Figs. 43 - 46 and 47 - 50 for LFT and HALS respectively.
Note in each case the orderly progression toward more negative (shallow)
biases as the nadir angle increases. This 1is due to the proportionately
larger effect of "undercutting" at larger incident angles. It can be seen
that there is tremendous variation in both the bias trends and magnitudes for
the two different processing and pulse location protocols. The HALS
log/difference/CFD biases are consistently more negative due mostly to later
detection on the surface return-but also partly to earlier detection on the
leading edge of propagation-stretched bottom returns. Note also the tendency
toward larger biases (both positive and negative) at larger physical depths
due to the fact that the depth acts as a scaling factor for the normalized
time delays. The effect of physical depth for constant nadir angles is
illustrated directly in Figs. 51 and 52.

It may be noted in Figs. 49, 50, and 52 that the HALS biases for large
nadir angles and moderate-to-large depths become very large and negative for
optical depths as small as 2. By analyzing the waveforms, it can be seen that
these biases are real but an artifact of the processing. The algorithm
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detects prior to the desired time because of the existence in these cases of a
plateau very close to the zero level in the internal CFD signal on which
positive-going zero crossings are detected. This effect is undesirable
becahse a small variation in return shape, receiver field of view, or a small
amount of noise can cause a huge variation (and hence error) in the measured
depths.” This is a serious problem which would have to be dealt with if the
HALS protocol were used operationally.

Since neither phase function, w,, nor a can be practically measured from
the air, operational variables such as nadir angle must be purposefully
selected to minimize the resulting bias uncertainties. This fact s
illustrated in Figs. 53 and 54 for the nadir case at a depth of 20 m. The
biases are large and a strong function of wyaD. For LFTs, the uncertainty in
phase function alone results in bias uncertainties of 20 c¢cm at high optical
depths. For these reasons, operation near nadir is undesirable.

The effect of receiver field of view (FOV) is seen in Figs. 55 and 56.
The parameter used to define FOV in all bias plots is the radius of the spot
viewed on the surface by the telescope scaled to the depth of the water
(rg/D). Previous plots have all been for rg/D=0.5 (dg/D = 1), which, as noted
earlier, is a value that has been determined to be both appropriate and
realizable. Reducing that by a factor of two is seen to have an effect on the
biases of typically less than 10 cm. Larger FOVs have slightly larger biases.

The effect of the pulse location threshold fraction at a 20-m depth is
demonstrated in Fig. 57. The 20% threshold yields more negative biases than
the 50% threshold because detection occurs relatively earlier on the stretched
bottom return pulse. The reverse is true for the 80% threshold. The variation
in bias magnitude with nadir angle is larger for lower thresholds; the higher
thresholds are thus preferred. They are also superior from the point of view
of precision (Guenther and Thomas 1981d) because low thresholds are inherently
noisier. Similar relationships apply for other depths.

For the HALS processing algorithm, the duration of the difference delay
must be roughly equal to the risetime of the source pulse. Shorter values
reduce -the available signal amplitudes, and longer values lead to large, deep
biases and large bias variation (see next section) at low depths or optical
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depths. This is due to distortion of the resulting waveform caused by the
influence of the volume backscatter signal which precedes the bottom return.
A1l results presented here are for a difference delay of A = 6 ns which nicely
matches the 7-ns source risetime used for generating the ERFs.

The analog of LFT fraction for CFDs is the CFD time delay. It has been
shown (Guenther 1982) that the ratio of the delay to the pulse risetime for
log/difference/CFD processing is roughly equivalent to the threshold fraction
for an LFT. The detection points are determined mainly by the delay times,
however, and are not as sensitive to pulse shape as those for fractional
thresholds. As seen in Fig. 58, the effect of the CFD delay on the biases is
small, because the detection points shift on the bottom returns by an amount
nearly equal to those on the surface returns. The effect of the de]ay'on
biases could have been larger, however, were it not for competing effects
associated with the volume backscatter slope and the difference operation.

Log/difference/CFD processing has a disadvantage in that there is an
additional degree of freedom in the bias dependency -- the so-called Pm/B
ratio which is a measure (in linear space) of the peak signal-to-background
ratio. Figure 59 details the effect of P,/B on biases for difference and CFD
delays of 6 ns and typical Pm/B values of 1, 3, and 10, Note that if Pm/B is
not specified in the bias correction procedure, an additional 10 cm
uncertainty will result. This effect is generally larger than the effect of
varying CFD delays. It will be seen shortly that this added error component
is unacceptably large if the total bias uncertainty is to be limited to tl15

cm, and that for this type of processing, P,/B will need to be estimated for
each return.

Bias curves for "typical" operating parameters for a 50% LFT are seen in
Figs. 60 - 62. It can be seen in comparison with earlier figures that
selection of the appropriate range of nadir angles (20° - 25° in this case)
can significantly reduce the bias variation with optical and physical depth.
To depths of 20 m, the residual variations are primarily due to phase function
and single-scattering albedo. In the 20° - 25° range, the 5 - 20-m biases are
seen to be limited to 20 cm. Biases for greater depths become increasingly
shallow.
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Biases for a range of ‘“typical" operating conditions for. HALS
log/difference/CFD processing are seen in Figs. 63 and 64 for the two phase
functions. The overall ranges of biases are larger than for a 50% LFT, and
are larger even for single P,/B values. The 15° nadir angle which balances
the bias range about zero is significantly smaller than that for LFTs
(20° - 25°).

5.4 Bias Variation

For bias correction purposes, predicted biases can be utilized only to
the extent that the driving independent parameters are known. During flight
operations, those parameters which are known or can be reasonably estimated
are nadir angle, water depth, processing pfbtocol, receiver field of view,
and, if necessary, peak signal-to-background ratio. Water optical parameters
which are unknown and difficult to estimate in real time from lidar returns
are phase function and scattering optical depth. The critical question is to
what accuracy the biases can be predicted without the latter information. As
will now be seen, detailed knowledge of water optical properties: is not
necessary for satisfactory bias correction accuracy if the scanner nadir angle
is appropriately limited to a value which produces minimum bias variation for
unknown conditions.

For various combinations of known parameters; the bounding bias
predictions, based on total uncertainty in phase function and scattering
optical depth, have been extracted from the data base. For this procedure, -u,
values of 0.6 and 0.8 were associated with the NAVY phase function, and 0.8
and 0.9 with the NOS. The optical depth was considered unknown over the range
from 2 to 16. For fixed values of nadir angle and depth, the mean values of
the bounding bias pairs and the variations from these means to the bounding
values have been calculated.

The means of the bounding bias pairs or "mean extrema" biases are the
optimum bias predictors from the point of view that they minimize the worst-
case bias prediction errors over all unknown water clarity conditions. They
are neither the average nor the most probable biases. The variations from the
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extrema means to the extrema, the so-called “"half-ranges," are those worst-
case errors. In other words, if the reported mean of the bounding biases for
a given nadir angle and depth is used as a "passive" bias corrector, the error
in the resulting depth éstimate due to the effect of unknown water clarity
parameters should never be larger than the reported variation or half-range.
If these bias variations can be constrained to acceptable bounds by the
selection of appropriate ranges of operating variables, then precalculated
mean biases can be applied to measured depths as correctors, and water clarity
parameters need not be estimated from field data. If the bias variations are
too large, however, “active" bias correctors calculated from real-time, pulse-
to-pulse estimates of water optical properties will be necessary. It would be
beneficial to avoid this considerably more taxing procedure, if possible.

The magnitudes and functionalities of the bias extrema means and half-
ranges about the means for various LFT and CFD cases are presented in Figs.
65 - 76. The bias variations or half-ranges for a 50% LFT are plotted as a
function of nadir angle in Fig. 65 for depths from 5 to 40 m and for a FOV
(R/D) of 0.5. The main feature of this data is the existense of minima in the
bias variation curves. These minima occur as the- bias trends switch from
being lengthened by multiple scattering to being shortened by undercutting.
The resulting mean biases for these bias variation minima are thus generally
fairly small. At a 20-m depth the minimum for this case is at a nadir angle
of 23°, while at 40 m the minimum is at 20°. For depths of 5 m and 10 m the
minima are beyond 30°.

The critical issue is the magnitude of the bias variation with unknown
water parameters. In a total error budget of t 30 cm, only about 15 cm can be
allotted to this error source. This is noted on the figures by a dashed
line. It can be seen in Fig. 65 that bias variations for the old 20-m depth
requirement are less than 15 c¢m for nadir angles between 20° and 26°, For 5-m
and 10-m depths, bias variations are under 15 cm beyond angles of 13° and 19°,
respectively. At 40 m, the minimum variation is 21 cm, and, by interpolation,
the 30-m minimum variation at 22° is about 17 cm, which slightly exceeds the
desired (but somewhat arbitrarily selected) value. For this processing
scheme, 22° is thus the desired operating angle. Uncontrolled aircraft roll
and pitch will cause larger errors which would best be suppressed by using a
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gyro-stabilized scanning mirror. Operation at suboptimal angles will lead to
errors in bias prediction which greatly exceed international standards. At
nadir, for example, the bias variation for a 50% LFT is seen to be +37 cm at a
20-m depth and +47 cm at 30 m. The mean extrema biases for the 50% LFT case
are plotted versus depth and nadir angle, respectively, in Figs. 66 and 67.
Because the range of unknown optical depths from 2 to 16 is quite large,
it was felt that even marginally increased knowledge of that parameter might
reduce the bias variations. To that end, the same procedure was repeated for
the case where oD is known (or assumed) to be either less than or greater than
8. The resulting half-ranges are seen in Fig. 68 for a 20-m depth. The
resulting minimum half-range for 2 < aD < 8 is quite a bit smaller, but the
half-range for 8 < oD < 16 is virtually the same as for 2 < oD < 16. For the
high o0 case, the angular range for which the bias variation is less than
15 cm expands only slightly to 19° - 28°, This means that most of the total
variation occurs at high aDs, and that much higher resolution in an aD
estimate would be required to significantly reduce the bias variation.

Figures 69 - 71 contain bias half-range and mean extrema biases for the
case of a 20% LFT. The half-range curves are similar to their 50% LFT
counterparts except that the half-range minima have been shifted to slightly
lower nadir angles. For a 20-m depth, the minimum is at 20°, and for a 15-cm
bias uncertainty, the nadir angle range is 17° to 23°. The 40-m minimum is
20 cm at 17°. By interpolation, the 30-m minimum is about 16 cm at 19.5°.
. The reason for the shift of the minimum to lower angles is that these mean
extrema biases are more negative for given depths and nadir angles than those
for the higher threshold. The crossover point thus occurs at lower nadir
angles. This case is less attractive than for the 50% LFT for an unrelated
reason: the resulting random error component is much larger (Guenther and
Thomas 1981d).

The character of the bias variations and mean extrema biases for HALS
processing is less definitive than for the LFT case. First, the sensitivity
to the lower end of the optical depth range is much greater. Because water
clarity tends to decrease as depth decreases, it is felt that a lower limit of
2 is appropriate for practical use. If that range were expanded to (0 - 16)
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instead of (2 - 16), however, significant differences would result due to the
frequently large biases evidenced even for aD=2, Secondly, because of the
previously mentioned plateau in the CFD signal for cases with large nadir
angles, low optical depths, and high physical depths (very clean water), the
biases will depend heavily on the exact pulse location logic in a real, noisy
system. The early detections reported here for the noise-free, idealized case
lead to large but fairly constant negative biases across a wide range of
optical depthé. Slightly altered (more sophisticated) logic could result in
much later detections and increased bias dependence on optical depth (and
hence increased bias variations and decreased mean extrema biases). Even
though the bias variations with optical depth for the idealized case may be
relatively low for large biases, operation under such conditions would be
undesirable due to sensitivity of the exact bias values to uncertainties in
nadir angle, random errors in the simulation results, and random noise in the
actual signals. Because of these problems, results for the offending cases,
which luckily fall outside the operational region of interest, will not be
presented.
I

Figure 72 shows the bias variation for HALS processing with a difference
delay and- a CFD delay of 6 ns for a range. of (unknown) peak signal-to-
background ratios (Pm/B) from 1 to 10, The minimum half-range at a 20-m depth
for this case is 17 cm, and the combined minimum over the 5 - 30 m depth range
is 20 cm at 14.5°, The reason f9r the increase in the minimum bias variation
over the LFT cases is the adaed degree of freedom represented by P,/B.
Because the minimum value is unsatisfactorily large, specific information on
Pn/B will be required. Bias half-ranges and mean extrema biases for P,/B
fixed at values of 1 and 10 are plotted in Figs. 73 - 74 and 75 - 76.
Although the half-ranges are quite similar, the mean extrema biases differ by
about 10 cm. The 20-m half-range minima are 9 cm-and occur at angles of
14° - 15°, At a 20-m depth, the 15-cm level is not exceeded for nadir angles
in the range 14.5° + 4°, These angles are smaller than those for the LFT
cases. The mean extrema biases for the given conditions are more negative
than for LFTs, and they change more rapidly with varying nadir angle. The
most constraining circumstances for minimum and maximum nadir angle (for half-
ranges not to exceed +15 cm) occur for 5-m and 30-m depths, respectively. For
Pn/B=1, the 5-m half-ranges exceed 15 cm for angles less than 15°, while for
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Pn/B=10, the 30-m half-ranges exceed 15 cm for angles greater than 15.5°. The
desired operating angle for the HALS processing scheme is thus 15°. A gyro-
stabilized scanning mirror is again highly desirable. Curves for CFD delays
of 3 and 10 ns are similar due to the previously noted relative insensitivity
of the biases to that parameter. As with the LFT case, splitting biases into
two optical depth ranges does not provide a means of significantly improving
performance, even though the functionalities are somewhat different.

5.5 Formal Bias Description

For use as bias correctors, the mean extrema biases presented in the
figures can be either tabulated or fitted analytically. Smoothed biases
tabulated at 5m, 10 m, 20 m, 30 m, and 40 m can be interpolated linearly over
depth and nadir angle, with very small residual errors, for nadir angles up to
and including 25°. Alternately, if algebraic representations are desired, the
biases can be described in the form

B(cm) = aD" - bD™(1 - coss)K, (9) -

where B is the bias in centimeters, D is the depth in meters, and 8 is the air
nadir angle. The coefficients a, b, n, m, and k can be adjusted to fit the
bias curves for various cases of signal processing algorithms and parameters.
Table 2 presents sets of coefficients for the mean extrema bias curves shown
in Figs. 66, 70, 74, and 76 along with their respective RMS of fit and maximum
deviation of fit calculated for depths from 5 m - 20 m and nadir angles of

15° - 25° for LFT and 10° - 20° for CFD. The fits themselves are valid from
0° - 25° and for depths to 40 m, as well.
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Table 2. Bias Fitting Coefficients

maxe.

Case Fig.# a b n m k RMS dev.
(cm)  (cm)

LFT 50% 66 6.5 27.0 0.58 1.25 1.26 2.5 4.7
LFT 20% 70 8.3 21.5 0.46 1.16 0.98 1.3 2.3
HALS*A=6=6 ns, Py/B=1 74 32.8 37.4 0.043 1.28 1.18 2.5 5.7
HALS A=8=6 ns, P,/B=10 76 15.9 21.8 0.13 1.59 1.30 2.6 6.8

* pzdifference delay, §=CFD delay

Linear interpolation of tabulated values provides a slightly more accurate, if
more cumbersome, representation of the simulation outputs, but it is possidble
that the inherent smoothing action of the analytic fit over all parameters may
provide slightly more consistent results. Regardless of whether CFD biases
are derived from tables or a formal expression, they will have to be
calculated by interpolation or extrapolation from the two given values of
Pm/B. As seen in Guenther (1982), the estimation should be performed linearly
on the log(Py/B). :
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6.0 BIAS CORRECTION
6.1 Introduction

As seen in section 5.3, the propagation-induced depth measurement biases
depend functionally on the scattering optical depth. The direct or "active"
application of specific bias predictions as bias correctors to fielq data
would require sufficiently accurate measurement or estimation of the driving
water optical parameter, namely, the scattering coefficient. Sufficiently
dense and synoptic sea-truth measurements of the scattering coefficient cannot
be economically collected over the large and diverse areas required, and it
cannot be obtained from ancillary, passive remote sensing devices. The only
viable alternative is thus estimation of the scattering coefficient or the
scattering optical depth from quantifiable features of the returning laser

waveforms.

The most straightforward and reliable parameter available from the return
waveform is the volume backscatter exponential decay coefficient, ky. It has
been demonstrated by Gordon (1982) that for sufficiently large receiver FOV,
the value of k, in shallow water appears to be roughly equal to the value of
the diffuse attenuation coefficient, K, of the water. Also for the large
field-of-view case, Phillips and Koerber (1984) argue that k, is equal to the
absorption coefficient, a value slightly smaller than K. For limited fields
of view, the backscatter decay coefficient is somewhat larger than for the
large-FOV case. For a practical system FOV, this increases the coefficient to

a value again very near K. In summation, the value of K, or something very
near it, can be estimated from individual lidar returns.

The problem is that there is no sufficiently accurate way of obtaining an
estimate of the required scattering coefficient, s, from'K. From a plot of s
versus K data for natural waters, as seen in Fig. 77 (accumulated from a
variety of sources), it can be seen that the scatter in the functional
propensity is too large. At K=0.15 m~1, for examp]e; the values of s range
over a factor of 9, which is far too large to be of use. Similarly, if one
notes the propensity for w,20.8 in many coastal waters, one could make a rough
estimate of a from the K/a relationship in section 4. One could then further
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estimate s=mba50.8a. For actual cases where 0.6<w,<0.9, the double errors
arising from this approximation are again far too large for the resulting
estimates to be of practical use.

Two promising procedures involving the return waveforms have been
investigated in some detail. These are the use of extrapolated volume
backscatter amplitude to estimate s, and the use of bottom return pulse width
to estimate sD. It will be seen that_both procedures have attendant problems

which cause them to be of questionable utility.
6.2 Extrapolated Backscatter Amplitude

The temporal shape of the volume backscatter return has been calculated
for a triangular source pulse with a half width (FWHM), t,. The model
consists of multiple forward scattering, a single backscattering, and multiple
forward scattering back to the surface. Let time be measured from a zero
reference when the peak of the source pulse is at the air/sea interface. For
time, t, define x=Kct, where ¢ is the speed of light in water. Similarly,
XgsKety.  For 0<x<x,, the temporal form of the leading edge of the volume
backscatter signal is pv(x)=c(n)[1+(1-x-2e‘x+e'(X+xo))/xOJ/K, where p, is the
backscatter reflectivity per unit solid angle, and o(w) is the value of the
volume scattering function in the backscatter direction (at 180°). This
waveform peaks at a time xp=1n(2-e‘xo) with a peak reflectivity
pv(xp)=a(n)[1-xp/x°]/2K. For x>x, (the case where the entire pulse is in the
water), the trailing edge of the backscatter return 1is described as
py(x)=o(n) e~X [eXo+e™X0-2]/2Kx,. Extrapolating this slope back to x=0 yields
py' (0)=o( 7)[eXo+e X0-2]/2Kx, which can be rewritten as
py ' (0)=Lo(m)xy/2K][(eXote™®0-2)/x,2].  The Tlatter term in brackets, for
0<K<0.5 m'l, is equal to 1.05t0.025. The amplitude of the extrapolated
backscatter reflectivity slope is thus p,'(0)=o(n)xy/2K=ctyo(n)/2. The value
of o(w) can thus be estimated from p,'(0) because ¢ and t, are known.

An empirical ré]ationship exists between o(x) and s in natural waters as
seen in Fig. 78. The inset is a plot of Petzold (1972) data for a variety of
typical water types from clear, deep ocean to fairly dirty harbor. The full
plot includes three nearly opaque river samples (Whitlock 1981) for acedemic
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interest. Given o(w), s can be inferred from these "calibration" curves. The
value of s can thus be estimated from the extrapolated backscatter amplitude.

This technique, although theoretically feasible, has several major
practical drawbacks. The quantity of interest, p,'(0) is based on an absolute
magnitude, i.e., a system voltage level, not a relative quantity such as a
slope. Values of pv'(O) are obtained from the absolute magnitude of the
extrapolated backscatter power P '(0) via a relationship such as

2
mng n, PT AR €0s<0
2 Y2

n, H

where m is the intercept factor from section 4.3.2 (z1.25),

P,'(0) = p,'(0), (10)

‘Mg is the total optical system efficiency,

n, is the two-way air path loss, '

Py is the transmitted peak power,

Ag is the receiver aperture area,

8 is the air nadir angle,

w 1s the index of refraction of water, and

H is the aircraft altitude.

Errors in estimating all these quantities lead to errors in the estimate of
py'(0) and subsequently o(n) and s. This means that the lidar system must be
constantly maintained in a state of absolute radiometric calibration. Errors
would arise from varying amp]ifiér gains and PMT voltages, temperature-
dependent optical signal variations, dirty optics, laser power fluctuations,
etc.

In order for this technique to be of use, the waveforms must be recorded
and returned for evaluation in post-flight data processing. The system must
contain no nonlinear processes such as partial optical blocks or variable,
real-time gain control which affect the shape of the backscatter tail. The
laser source pulse must be sharply terminated so the tail of the surface
return does not add significant energy into the backscatter signal. The
technique will not work in relatively shallow water where the backscatter
slope is too short to be accurately extrapolated and is contaminated by the
surface and bottom return energies. Furthermore, the automated estimation of
backscatter slopes from lidar waveforms would be difficult, time consuming,
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and the results frequently imprecise. Finally, given o(n), the estimate of s
depends on then s versus o(w) calibration curve. The existing Petzold data

set would need to be further confirmed and expanded to ensure consistancy.
6.3 Bottom Return Pulse Width

It was noted by H. S. Lee (Moniteq 1983) that for nadir beam entry, NAVY
phase function, and optical depths limited to a maximum of 16, the IRF pulse
widths (at half the peak height) depend largely on the product wyaD (=sD)
rather than on w, and o separately. This is the same dependence noted in the
depth measurement biases. This leads to the concept that measurement of the
bottom return pulse widths might be able to provide estimates of sD of
sufficient precision. to be used as an input (independent variable) for
"actively" selecting an appropriate depth measurement bias predictor/corrector
for each individual sounding.

In order for such a technique to be practical, a number of criteria must
be met. The basic functionality must hold at all nadir angles of interest.
The effect of varying. phase function must be small, because it is
uncontrollable and unknown. A procedure must be found to "deconvolve" the
bottom return (i.e., the ERF) to yield an estimate of the IRF which is
accurate enough to maintain the key depth scaling property. In addition, the
effect of environmental effects on the pulse widths must be small and the
added computing burden reasonable. As will now be seen, none of these
requirements are fully met in practice.

The plots of pulse width versus sD for various w, are basically “s"
shaped and saturate at different levels of pulse width. Plots for different
w, tend to be similar to'within sD's of i1, but only to the extent that aD is
limited to no more than about 16. For larger oD, the pulse widths for low W

cases appear to approach saturation at lower pulse widths. These trends
cannot be precisely defined because the simulation was not carried out for oD
larger than 16 and because the precision of the estimates is reduced for low
w, due to the inherent loss of signal strength from increased relative
absorption (higher K). A loss of sufficient signal strength tends to yield
anomalously reduced pulse widths, and the technique will probably not work for
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very weak signals. The trends in the results vary slightly with nadir angle,
but the above description is applicable from 0° to at least 25°.

The phase function effect on pulse widths is larger than for depth
measurement biases and, as seen in Fig. 79, is not insignificant. This occurs
because the trailing edge of the bottom return pulse is more affected than the
leading edge. More broadly scattering phase functions such as "NOS" result in
Tonger trailing edges for given values of sD. For an average phase function
between NAVY and NOS, the uncertainty in sD at high sD for a given pulse width
is as large as $2 for the defining cases. This alone is large, and when added
to a number of other error sources, it becomes problemmatic. Also seen is the
residual W effect.

Given a known source pulse, actual deconvolution of a bottom return is
impractical because it is a time consuming and noisy process. A simple
alternative is to measure the width of the bottom return and subtract the
width of the source pulse, either in quadrature or linearly, to estimate the
width of the underlying IRF. The results of these procedures are seen for a
20-m depth in Fig. 80 in comparison with the actual width of the IRF. It cén
be seen that neither approximation'is valid for a full range of sD: linear
subtraction works best at- low sD, and quadrature subtraction works best at
high sD. This effect is more evident at 10 m and less evident at 40 m. As a
result, neither approximation will scale properly with depth across the full
range of sD, because the estimate must behave like the IRF in order to scale
properly. This effect has been confirmed by comparing results scaled from
10-m, 20-m, and 40-m .ERFs. Since the biases, and hence bias correction
errors, are larger at high sD, the quadrature subtraction is preferred, as
seen in Fig. 81 for the 15°, NAVY case. It can be seen, for example, that the
uncertainty in sD for depths from 10 m - 40 m becomes less than tl1.5 for
sD>7. This is the region of interest where most bias variation occurs.
Improved estimates of sD could be obtained by interpolation on depth if curves
such as these were used for calibration.

For the procedure to yield reliable bias estimates, the pulse widths must

be relatively independent of interfering effects. This is not the case. The
bottom returns will also be broadened by bottom vegetation, bottom slope,
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coral heads, and other such phenomena. The pulse is stretched because part of
the return comes from the tops of the plants, and the rest comes from the
“true" bottom. The measured depth will be a weighted average which depends on
vegetation density and which is slightly shallower than the depth to the true
bottom.

The presence or absence of bottom vegetation in a given sounding cannot
be known a priori, and the effect can be doubly dangerous if pulse width is
used for bias estimation. A broadened pulse implies higher sD. If the nadir
angle and depth are such that biases are positive (deep), a higher apparent sD
from vegetation broadening will lead to prediction of a deeper bias which will
then be subtracted from the already somewhat shallow result.

Airborne lidar hydrography post-flight data processing in the field must
be accomplished in no more than a small multiple (i.e., 2-3x) of the data
acquisition time in order for the technique to be practical. The computing
burden for just positioning and depth determination for the large number of
soundings is staggering (Childs and Enabnit 1982). The use of active bias
correctors on a pulse-to-pulse basis would require considerable added storage
and processing time for estimating, scaling, and correcting pulse widths,
computing sD, and computing and applying the bias corréctors.

6.4 Bias Correction Conclusions

If the scattering optical depth can be adequately estimated on a pulse-
to-pulse basis from the air, detailed bias predictions such as those tabulated
in Appendix A can be interpolated or regressed to produce bias correctors.
The ability to accurately or efficiently perform this estimation, however, is
questionable.

The extrapolated backscatter magnitude technique for estimation of the
scattering coefficient, though theoretically feasible, ‘appears to be
relatively impractical in application due to severe hardware, software, and
accuracy problems.

Although pulse widths appear to be a plausible parameter from which
scattering optical depth and hence propagation-induced depth measurement
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biases could be estimated on a pulse-to-pulse basis, there are a number of
error sources which, when summed, would significantly reduce the effectiveness
of the estimation. The results, although not foolproof, could provide a
limited measure of bias correction, particularly for non-optimal nadir angles,
if the computing burden were acceptable. This may be the largest drawback.
It is difficult to recommend a technique with such a low benefit/cost ratio.

It appears to be preferable to restrict the nadir angle of operation to a
range appropriate for minimizing the biases (for the pulse processing and
location algorithms selected). One can then apply simple, passive bias
" correctors as previously described in section 5.4 and quantified in section
5.5 (Eq.(9) and Table 2) for a 7-ns source pulse and LFT or HALS processing.

Procedures and bias tables in Guenther and Thomas (1981b) are outdated.
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7.0 CONCLUSIONS

The impact of undérwater light propagation mechanisms on the depth
measurement accuracy of airborne laser hydrography has been investigated via a
powerful new Monte Carlo computer simulation procedure. The simulation
program provides a set of paths for downwelling photons arriving at the bottom'
for given sets of optical parameters and system variables. The resulting
temporal and spatial distributions are used to compute impulse and actual
source or “"environmental" response functions at a distant, off-nadir, airborne
receiver,

Scattering from particulate materials in the water column causes
substantial spatial spreading of the beam. For typical operating optical
depths, the half-power beam width is about 28°. Detection of small targets is
enhanced by leading-edge pulse location algorithms. The resulting receiver
field-of-view requirement for no significant reduction of peak return power is
a full angle of'0.7D/H radians. For a 7-ns FWHM source pulse, the peak return
power for a sufficient receiver FOV can be described as exponential with depth
with a log slope of -2nKsec¢, where 1.1 < n(s, Wy s 8) < 1.4,

Depth measurement biases are calculated from environmental response
functions, based on the 7-ns source pulse, for several typical signal
processing and pulse location algorithms. These biases have been developed
for bounding ranges of optical parameters in coastal waters and for all
combinations of typical operational system variables. The only external input
is the "phase function" scattering distribution. The sensitivity of the
biases to phase function is small, but reported biases could differ somewhat
from field data should the selected Petzold functions prove not to be
representative at small angles.

Resultant biases may be either deep due to multiple scattering or shallow
due to geometric undercutting, depending on nadir angle, water depth, and
water optical properties. The strongest functionalities are with scattering
optical depth, nadir angle, and signal processing and pulse Tlocation
algorithms. It has been found that the net bias magnitudes can be large
compared to international accuracy standards, and that the biases should
therefore be corrected out of operational, raw depth data.
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These bias predictions, in the form of look-up tables or regressions, can
be used as "active" bias correctors for operational data on a pulse-to-pulse
basis if the scattering optical depth can be estimated from the waveforms with
sufficient accuracy. Because of the significant problems involved in
estimating the scattering coefficient or scattering optical depth from the
air, however, an alternate approach is presented. It has been shown that for
certain limited ranges of scanner nadir angles, whose magnitudes depend on
signal processing protocol, the bias variations due to unknown water optical
parameters are less than #15 cm at a 20-m depth and $20 cm at a 30-m depth.
These optimal nadir angles, in the 15° - 23° range, are appropriate for system
operation in terms of desired swath width and aircraft altitude.

Constraining operations to preferred nadir angles via appropriate scanner
design will permit "passive" bias correction using mean extrema biases which
depend only on readily available information such as nadir angle, depth, and
minor functionalities such as field of view and, for log/difference/CFD
processing, signal-to-background ratio. For 1linear processing with a
fractional threshold pulse Tlocation algorithm or for 1log/difference/CFD
processing, the optimum nadir angles and mean extrema biases reported herein
may be used for bias correction. For other signal processing and pulse
location protocols, corresponding mean extrema bias functionalities must be
calculated, and new matching nadir angles must be selected for minimum bias
variation.

Systems operating without active bias correction or not within the
optimal nadir angle range for passive bias correction will experience
uncertainties in depth measurement biases, as functions of unknown water
optical properties, which can be significantly 1larger than international
hydrographic accuracy standards permit. Even with limited ground-truth
. measurements of optical properties, such errors are unavoidable due to the

inherent patchiness of coastal waters. ’
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APPENDIX A. Bias Tabulation

Note: The mean biases presented here are averaged
between NAVY and NOS phase functions as well as over
various oD and w, combinations. Single-scattering
values of 0.8 and 0.6 were associated with NAVY, and
0.9 and 0.8 with NOS.

112



MEAN BIAS TABLES

Mgorithm LFT ;3  Air nadir angle 0°

Depth Threshold FOV(R/D) Scattering Optical Depth (,xD)
“(m) (%) 2 6 10 14
5 20 0.25 2 7 12 18
5 20 0.50 4 11 19 27
5. 50 0.25 1 6 11 18
5 50 . 0.50 3 11 19 26
5 80 0.25 0 4 8 14
5 80 0.50 1 8 15. 22
10 20 0.25 2 11 20 29
10 20 0.50 5 15 28 41
10 50 0.25 2 10 19 29
10 50 : 0.50 4 16 29 43
10 80 : 0.25 0 7 15 26
10 80 0.50 1 15 28 41
20 20 0.25 3 13 26 38
20 20 0.50 4 19 36 53
20 50 0.25 3 15 28 41
20 50 0.50 4 21 40 60
20 80 0.25 0 11 25 40
20 80 0.50 1 20 42 66
40 20 0.25 1 14 30 55
40 20 0.50 2 17 39 68
40 50 0.25 1 16 35 62
40 50 0.50 1 20 48 82
40 80 0.25 - 0 15 37 66
40 80 0.50 0 21 52 98

A1l biases in centimeters
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MEAN BIAS TABLES

Algorithm LFT ; Air nadir angle 10°

Depth Threshold FOV(R/D) Scattering Optical Depth (), xD)
(m) (%) 2 6 10 14
5 20 0.25 1 6 11 17
5 20 0.50 3 9 15 22
5 50 0.25 0 4 11 18
5 50 0.50 2 8 16 23
5 80 0.25 -2 2 7 13
5 80 0.50 -1 6 13 20
10 20 0.25 8 17 26
10 20 0.50 2 12 23 33
10 50 0.25 -1 8 16 26
10 50 0.50 2 13 23 37
10 80 0.25 -3 5 13 23
10 80 0.50 -1 10 23 37
20 20 0.25 -2 8 18 28
20 20 0.50 -2 11 24 38
20 50 0.25 -3 8 21 34
20 50 0.50 -2 14 30 49
20 80 0.25 -6 7 20 35
20 80 0.50 -5 13 34 58
40 20 0.25 -13 -3 11 27
40 20 0.50 -12 -1 17 39
40 50 0.25 -12 2 21 40
40 50 0.50 -11 - 7 30 58
40 80 0.25 -14 5 30 56
40 80 0.50 -14 11 - 45 85

A11 biases in centimeters
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MEAN BIAS TABLES

Algorithm LFT ;  Air nadir angle_ 15°

Depth Threshold FOV(R/D) Scattering Optical Depth (W), D)
(m) (%) 2 6 10 14
5 20 0.25 1 4 9 14
5 20 0.50 2 8 13 19
5 50 0.25 0 4 8 13
5 50 0.50 1 7 14 20
5 80 0.25 -2 1 5 11
5 80 0.50 -1 4 10 16
10 20 - 0.25 -1 5 11 20
10 20 0.50 0 7 16 24
10 50 0.25 -1 5 13 21
10 50 0.50 0 8 18 28
10 80 0.25 -3 2 11 20
10 80 0.50 -2 7 18 28
20 20 0.25 -6 -2 5 13
20 20 0.50 -6 -2 6 15
20 50 . 0.25 -6 1 9 18
20 50 0.50 -6 1 11 22
20 80 0.25 -8 0 11 22
20 80 - 0.50 -7 4 18 32
40 20 0.25 -19 -24 -16 -2
40 20 0.50 -21 =31 -22 -8
40 50 0.25 -16 -11 2 17
40 . 50 0.50 -16 -12 2 24
40 80 0.25 -16 -5 14 37
40 80 ' 0.50 -17 -4 18 43

A1l biases in centimeters
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MEAN BIAS TABLES

AMgorithm LFT ;  Air nadir angle 20°

Depth Threshold FOV(R/D) Scattering Optical Depth (W, D)
(m) ° (%) 2 6 10 14
5 20 0.25 0 3 5 8
5 20 0.50 1 4 8 12
5 50 0.25 -1 2 4 8
5 50 0.50 0 4 8 13
5 80 0.25 -3 -1 1 4
5 80 0.50 -2 2 6 11
10 20 0.25 -2 0 3 7
10 20 0.50 -2 0 4 9
10 50 0.25 -3 1 4 9
10 50 0.50 -2 2 7 13
10 80 0.25 -4 -2 2 6
10 80 0.50 -4 1 8 15,
20 20 0.25 -8 -15 -13 -5
20 20 0.50 -11 =21 -18 -10
20 - 50 0.25 -8 -8 -5 -1
20 50 0.50 9 | -1 -7 3
20 80 0.25 -9 -5 -1
20 80 0.50 -8 -6 1 8
40 20 0.25 || -24 -60 -58 -41
40 20 0.50 =27 -76 -74 =57
40 50 0.25 -17 -26 =30 -25
40 50 0.50 -18 -32 -35 -27
40 80 0.25 -16 -16 -14 -10
40 80 | 0.50 -17 -14 -5 3

A1l biases in centimeters
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MEAN BIAS TABLES

Algorithm LFT ;  Air nadir angle 25°

Depth Threshold FOV(R/D) | Scattering Optical Depth (WD)
(m) - (%) 2 6 10 14
5 20 0.25 -1 1 3 5
5 20 0.50 0 2 4 6
5 50 0.25 -2 0 2 4
5 50 0.50 -1 1 4 6
5 80 0.25 -4 -3 -1 2
5 80 0.50 -3 -1 2 5
10 20 0.25 -4 -5 -5 -5
10 20 0.50 -5 -9 -9 -8
10 50 0.25 -5 -4 -1
10 50 0.50 -5 -5 -2
10 80 0.25 -5 -5 -1 3
10 80 0.50 -5 -3 1 8
20 20 0.25 -12 -28 =32 -35
20 20 0.50 -15 -42 -48 -50
20 50 0.25 -10 -15 -18 -19
20 50 - 0.50 -11 -21 -21 -18
20 80 0.25 -10 -11 -10 -9
20 80 . 0.50 -10 -11 -7 -3
40 20 0.25 -32 -87 -98 -104
40 20 0.50 -35 -118 -140 -143
40 50 0.25 -18 -46 -61 -71
40 50 . 0.50 =23 -48 -57 -64
40 80 0.25 -13 -29 -41 -47
40 80 0.50 -19 -25 -19 -10

A1l biases in centimeters
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Air nadir angle 0°

MEAN BIAS TABLES

Algorithm: log / difference (A= 6ns) / CFD (&= 6ns)

Depth Pm/B FOV(R/D) Scattering Optical Depth (WgyaD)
(m) 2 6 10 14
5 1 0.25 21 35 . 46 52
5 1 0.50 21 40 49 55
5 10 0.25 7 16 23 30
5 10 0.50 19 27 35
10 1 0.25 18 32 43 51
10 1 0.50 20 37 49 57
10 10 0.25 14 23 30
10 10 0.50 7 18 27 37
20 0.25 15 30 43 54
20 0.50 16 34 48 60
20 10 0.25 5 13 23 34
20 10 0.50 15 28 41
40 0.25 11 25 | 41 57
40 0.50 11 26 45 65
40 10 0.25 2 7 20 40
40 10 0.50 2 7 21 43

A1l biases in centimeters
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Algorithm:

MEAN BIAS TABLES
log / difference (A= 6ns) / CFD ( §= 6ns)

Air nadir angle 10°

Depth Pm/B FOV(R/D) Scattering Optical Depth (Wg,aD)
(m) 2 6 10 14
5 0.25 18 33 42 48
5 0.50 21 36 45 51
5 10 0.25 14 22 29
5 10 0.50 7 17 26 32
10 1 0.25 15 28 37 44
10 1 0.50 17 32 41 46
10 10 0.25 4 11 19 26
10 10 0.50 4 14 . 22 30
20 1 0.25 9 21 29 35
20 1 0.50 9 22 31 37
20 10 0.25 -2 5 12 19
20 10 0.50 -2 6 15 23
40 0.25 -6 0 9 21
40 0.50 -6 1 11 22
40 10 0.25 -20 -19 -9
40 10 0.50 -20 -18 -9 2

A11 biases in centimeters
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MEAN BIAS TABLES

Algorithm: log / difference (A= 6ns) / CFD (&= 6ns)

Air nadir angle 15°
Depth Pm/B FOV(R/D) Scattering Optical Depth (Wq D)
(m) 2 6 10 14
5 1 0.25 17 29 36 41
5 1 0.50 19 31 38 42
5 10 0.25 12 17 22
5 10 0.50 14 20 25
10 1 0.25 12 21 28 32
10 1 0.50 12 21 _ 28 32
10 10 0.25 1 6 11 16
10 10 0.50 1 5 10 16
20 0.25 1 4 8 16
20 0.50 1 4 9
20 10 0.25 -9 -10 -7 0
20 10 0.50 -12 -16 -11 -4
40 0.25 =22 -42 -40 -32
40 0.50 =36 -54 -46 -39
40 10 0.25 -50 -63 -59 -44
40 10 0.50 =72 =77 -67 -57

A1l biases in centimeters
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MEAN BIAS TABLES

Algorithm: 1log / difference (A= 6ns) / CFD (&= 6ns)

‘Air nadir angle  20°
Depth Pm/B FOV(R/D) Scattering Optical Depth (Wq«D)
(m) 2 6 10 14
5 1 0.25 15 23 29 32
5 1 0.50 15 25 30 33
5 10 0.25 4 9 13 16
5 10 0.50 4 10 14 18
10 1 0.25 7 10 13 16
10 1 ~ 0.50 9 12 14
10 10 0.25 -1 -3 0 4
10 10 0.50 -3 -5 -1 4
20 1 0.25 -3 -18 -17 -6
20 1 0.50 -7 -29 -27 -20
20 10 0.25 -19 -36 -34 =21
20 10 0.50 -37 -49 -45 -38
40 1 0.25 -105 -108 -98 -85
40 1 0.50 -152 -143 -135 -134
40 10 0.25 -121 -121 -118 -1i4
40 10 0.50 -168 -162 -157 -151

A1l biases in centimeters
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